
WETALAC SDS FASTENBR DIVISION

METALAC Sp.S. FASTENER DIVISION

GYTYTOGO

CATÁLOGO DE ENGENHARIA DOS PRODUTOS TELLEP

Este catálogo contém informações completas sobre os produtos TELLEP, concebidos para aplicações mecânicas e comercializados pela METALAC.

A linha TELLEP (Standard) compreende:

- *Parafusos com sextavado interno: cabeça cilíndrica, cabeça cilíndrica baixa com ou sem guia e chave, sem cabeça, cabeça chata e cabeça abaulada;
- *Bujões de pressão com sextavado interno;
- *Chaves hexagonais.

Portando, tudo o que você deseja saber a respeito destes produtos de precisão e de alta qualidade, pode ser encontrado aqui. Por exemplo: material empregado, dimensões, dados de aplicação, propriedades mecânicas, etc.

Este catálogo foi elaborado de maneira a lhe proporcionar rapidez e facilidade de consulta. Todavia, se alguma dúvida não puder ser aclarada através da sua leitura, consulte nossa engenharia de produtos através do telefone 55 15 3334-3504.

Salientamos ainda que, além dos produtos da linha TELLEP aqui mencionados, a METALAC também projeta e fabrica fixadores de alta qualidade para aplicações específicas.

Para informações adicionais, entre em contato com a Metalac pelos telefones 55 15 3334-3511 / 3530 / 3563, email tellep@metalac.com.br ou pelo site www.metalac.com.br.

IMPORTANTE:

Reservamo-nos o direito de alterar sem prévio aviso as especificações contidas neste catálogo por motivo de atualização de normas ou de nosso desenvolvimento tecnológico.

Por favor, consulte um distribuidor para saber sobre a disponibilidade de estoque, pois existem neste catálogo itens que podem não ser produzidos para estoque.

Os exemplos de cálculo representam somente aplicações típicas. O uso das informações aqui disponibilizadas e sua adaptação aos casos reais específicos são de inteira responsabilidade do leitor. As aplicações variam tanto que a Metalac não pode garantir que os cenários descritos são apropriados para qualquer aplicação específica..

GARANTIA LIMITADA E REMEDIAÇÃO

A Metalac garante que seus produtos são fabricados de acordo com os padrões industriais especificados neste documento e garante também que os produtos não contém defeitos de materiais ou execução.

Esta garantia é explícita e se sobrepõe a qualquer outra garantia, explícita ou implícita, de natureza comercial ou que implique adequação a qualquer uso particular.

Essa garantia limitada exclui qualquer outra obrigação por parte da Metalac.

A Metalac irá, conforme sua conveniência, optar entre reparar ou trocar, sem custo ao cliente (excluindo custo de frete e manuseios eventuais) qualquer produto que não tenha sido submetido a mau uso, abuso ou modificação e que tenha sido fabricado em desacordo com as normas deste catálogo.

O reparo ou substituição, conforme acima convencionado, é a única e exclusiva responsabilidade da Metalac para remediar qualquer situação resultante da comercialização ou utilização de produtos Metalac.

Em hipótese nenhuma a Metalac será responsável por conseqüências, incidente ou qualquer dano de qualquer natureza, que não as acima estabelecidas.

Nenhuma outra pessoa, em nome da Metalac, poderá dar garantia adicional à acima especificada, seja verbal ou por escrito.

PREZADO CONSUMI DOR:

Habitue-se adquirir os produtos TELLEP diretamente dos revendedores METALAC.

Eles são muitos e estão espalhados por todo Brasil. Agindo assim, você poderá ter certeza de comprar o melhor, pelo seu justo preço.

Vantagens oferecidas pelos nossos distribuidores:

- Completo estoque de fixadores e, em muitos casos, grande variedade de artigos relacionados com a indústria:
- Rapidez de serviço, eliminando o tempo de espera nas entregas;
- Redução do custo de compra: uma encomenda, um cheque diminuindo a burocracia;

- Manutenção de grande estoque, o que lhe permite, inclusive, economia de espaço;
- Últimas informações acerca do produto que vende, mais o inestimável contato pessoal.
- METALAC e TELLEP são marcas registradas.
- Metalac e Metalac Fastener Inc. s\u00e3o parte da SPS Fastener Division da Precision Castpart Corp.
- As informações contidas neste catálogo substituem as anteriores.

A METALAC é uma empresa subsidiária do grupo Precision Castparts Corp. com sede em Portland, Oregon USA. A Precision Castparts Corp. é um fabricante mundial de grande variedade de produtos e componentes metálicos complexos, para aplicações industrial, automotiva e aeroespacial. A empresa é líder no mercado onde atua, com alto grau de tecnologia em sua linha de produtos e excelente gerenciamento de processos de manufatura.

A METALAC iniciou suas atividades em 1953 na cidade de São Paulo fabricando os parafusos com sextavado interno marca TELLEP, com o objetivo de suprir o mercado brasileiro. Atualmente, a linha de parafusos TELLEP é reconhecida internacionalmente pela sua qualidade diferenciada, que supera as especificações das normas internacionais e é exportada para mais de 20 países nos diversos continentes.

Na década de 1960, a METALAC iniciou a fabricação de peças de aplicações críticas para veículos automotores, como parafusos de motor, pinos de freio, parafusos de roda e outras. Hoje em dia, além de projetar, desenvolver e fornecer fixadores para quase todas as montadoras brasileiras de automóveis, caminhões, freios e motores, a

METALAC exporta itens de aplicações criticas para montadoras da Europa, Estados Unidos, África e América do Sul.

Em 1981 a METALAC mudou-se para uma moderna fábrica com mais de 32.000 metros quadrados de área construída na cidade de Sorocaba/SP, localizada à 90 km da capital paulista. Nesta fábrica, a METALAC conta com aproximadamente 350 funcionários que utilizam equipamentos e métodos de última geração e a mais avançada tecnologia na fabricação de fixadores, obtendo com isso, altos índices de qualidade e produtividade.

A METALAC possui um dos mais completos laboratórios de fixação do mundo, que aliado a uma competente equipe de técnicos e engenheiros, possibilita, atender a totalidade das necessidades técnicas de seus clientes, tanto no desenvolvimento de novos produtos como na elaboração de projetos de redução de custos.

O altíssimo padrão de qualidade dos produtos METALAC conferiu-lhe diversos prêmios e certificações dentre elas estão ISO TS 16949/2002 desde janeiro de 2004, ISO 14001 desde julho de 2003, pelo BVQI (Bureau Veritas Quality International) e FORD Q1 desde 1999.

Visando melhor atender às necessidades dos usuários finais no que tange a rapidez de serviços, variedade de artigos, completo estoque de fixadores, a linha de produtos TELLEP é comercializada exclusivamente através da rede de revendedores.

05

ISTO É METALAC

Produtos

- Linha TELLEP: parafusos e bujões com sextavado interno e chaves hexagonais.
- Parafusos e peças especiais de aplicações críticas.
- Torquímetros eletrônicos (MT e MTA).
- Determinador de torque e tensão (DTT).

Serviços de projeto e testes em laboratório.

- Projetos de racionalização de itens de fixação.
- Cálculo e dimensionamento do fixador ideal para a aplicação.
- Diagnóstico e solução para problemas de fixação.
- Ensaios de torque x tensão, torque x ângulo, fadiga e vibração transversal.
- Sensorização com strain gauges.
- Análises de tensões por elementos finitos.

Cursos sobre fixação com estudos de casos reais

- Cálculo de juntas rigidamente fixadas por parafusos.
- Fatores importantes para o dimensionamento dos fixadores.
- Análise de falhas em fixadores.
- TELLEP: Vantagens e diferenciais.

Obs.: Cursos apostilados e com parte prática nos laboratórios da METALAC.

ÍNDICE VISUAL E GUIA DE SELEÇÃO

	TIPOS	DENOMI NAÇÃO	APLICAÇÕES CARACTERÍSTICAS	NORMAS APLICÁVEIS	PÁGINAS
		Parafuso de cabeça cilíndrica com sextavado interno.	Utilizar em aplicações de alta responsabilidade e em fixações submetidas a elevadas forças de trabalho.	ASME B.18.3 DIN 912/ISO 4762	19 23
		Parafuso de cabeça cilíndrica baixa com sextavado interno	Usar em peças com espessuras finas onde o espaço para a cabeça é limitado.	DIN 6912 DIN 7984	24
		Parafuso sem cabeça com sextavado interno. Pontas: plana, cilíndrica, half-dog, cônica, recartilhada e côncava.	Para fixar colares, engrenagens, polias e volantes em eixos. Posicionamento de peças em máquinas.	ASME B 18.3 DIN 913/914/ 915/916 ISO 4026/4027/ 4028/4029	25 30
		Parafuso de cabeça chata com sextavado interno.	Ângulo sob a cabeça uniformemente controlado para um ótimo nivelamento e contato com a parede das peças.	ASME B 18.3 DIN 7991/ ISO 10642	31 33
		Parafuso de cabeça abaulada com sextavado interno.	Usar em materiais muito finos para se fazer o escareado. Para requisitos não críticos de resistência. Para cobertura de máquinas e tampas.	ASME B 18.3 ISO 7380	34 36
		Bujão de pressão com sextavado interno.	Conicidade 3/4" ou 7/8". Para vedações de alta pressão sem a necessidade de componentes especiais.	SAE J531	37 38
		Chave hexagonal	Tenaz, dúctil, para altos torques; os cantos não arredondam; ajuste preciso em todos os tipos de parafusos com sextavado interno.	ASME B.18.3 DIN 911/ ISO 2936	39 41
		Tratamento superficial			. 42 43
	For	rça Tensora (F _M) – tabela 1 ·			. 44 45
	Fator N	Multiplicador (R) - tabela 2 ·			· 46
-	Força	de aperto (A) - tabela 3 ·			· 47
		e de Torque (K) – tabela 4 stência à Fadiga – tabela 5			· 48
	Dimensão de escar	reado e furo de passagem.			. 49 50

A EVOLUÇÃO

O aprimoramento dos projetos e a necessidade de reduzir custos são constantes num mercado competitivo. Máquinas e equipamentos tornam-se mais leves, mais rápidos, mais potentes e mais eficientes. Os clientes exigem maior desempenho, durabilidade e confiabilidade a custos menores.

Essa evolução contínua dos projetos aumenta a solicitação mecânica dos componentes e juntas, e portanto, dos parafusos, principalmente da família de parafusos de cabeça cilíndrica com sextavado interno. As normas internacionais sobre o assunto foram feitas há várias décadas e não contemplam os recentes

desenvolvimentos das técnicas de aparafusamento e de projetos de parafusos e juntas aparafusadas. Atender essas normas, hoje não basta. É preciso ter um produto adequado às exigências dos melhores projetos mecânicos, os quais requerem especificações adicionais às normas atuais.

A METALAC, com a experiência de quem projeta e produz os mais solicitados parafusos automotivos da atualidade e utilizando-se da tecnologia da matriz, SPS Fastener Division, nos EUA, que é líder mundial no segmento de parafusos aeroespaciais, produz sua linha de parafusos TELLEP, excedendo as normas internacionais como detalhado adiante.

PARAFUSOS DE CABEÇA CILINDRICA COM SEXTAVADO INTERNO

A linha de parafusos de cabeça cilíndrica com sextavado interno tem uma ampla gama de aplicações, entre elas, as de fixação mecânica e de aplicações críticas, submetidos a esforços repetitivos ou alternantes.

São utilizados por centenas de milhares de usuários, para infinitas aplicações, muitas das quais onde uma falha pode provocar grandes prejuízos materiais e risco de vida. Qualidade inferior ou desempenho duvidoso não podem ser tolerados.

O desempenho destes parafusos deve estar garantido pela qualidade do projeto, pelas características dimensionais e físico-metalúrgicas do fixador e pelo método de montagem.

Quando montados fixando juntas submetidas a cargas dinâmicas, os parafusos estarão sujeitos a tensões de fadiga. Apesar das normas não determinarem tensões mínimas de fadiga para este parafuso, a METALAC, usando os conceitos e técnicas aplicadas aos fixadores automotivos submetidos à fadiga, especifica e garante valores mínimos de tensão admissível à fadiga para sua linha TELLEP nas aplicações mecânicas.

O aperto por controle de torque é o método mais usual para montagem dos parafusos de cabeça cilíndrica com sextavado interno. Esse método de aparafusamento é pouco preciso devido à grande variação dos coeficientes de atrito na rosca, no assentamento da cabeça do parafuso e na contra peça, gerando variações de força de até 50% para mais ou menos. Isso equivale a dizer que, para um mesmo torque de aperto do parafuso, pode se gerar força de fechamento de 50% a 150% do valor desejado, possibilitando a ocorrência de falhas mecânicas imediatas ou tardias.

Forças de fechamento muito baixas podem causar a separação das peças que se pretende unir. Forças altas podem ultrapassar o limite de escoamento do material e causar ruptura do parafuso, esmagamento da junta ou danificação da contra peça.

Graças às especificações adicionais às exigidas em normas, como detalhes de tratamento superficial e tolerâncias de concentricidade, entre outros, a METALAC produz a linha TELLEP dentro de limites estreitos de coeficiente de atrito, conforme consta neste catálogo. Estas especificações de atritos permitem ao projetista otimizar seu projeto e obter juntas adequadas, sem super dimensionamentos, reduzindo custos e aumentando a confiabilidade.

Como citado, o aperto por torque pode levar os parafusos a deformações plásticas sem controle. Deformações plásticas excessivas são perigosas, especialmente quando em parafusos fabricados com aços menos nobres, de baixa liga, com tratamento térmico convencional. Alta capacidade de deformação plástica com manutenção da força tensora é muito importante no fixador. O comprimento da rosca é um parâmetro fundamental, porém às vezes não pode ser alterado.

Para minimizar o risco de falhas, devido ao excesso de deformação plástica, a METALAC, além de utilizar somente aços-liga nobres , fabrica os produtos TELLEP nos mais modernos fornos automáticos existentes para a produção de parafusos, com altas temperaturas de revenimento e com monitoramento computadorizado de todos os parâmetros da operação, obtendo tolerâncias nas faixas de dureza bem mais apertadas que as permitidas em norma.

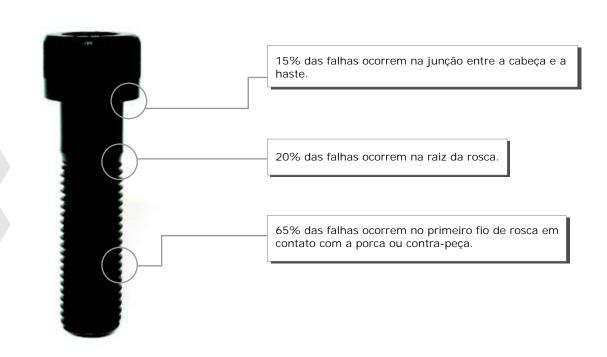
Como se pode perceber, os parafusos de cabeça cilíndrica com sextavado interno deveriam ter características dimensionais e físico mecânicas adicionais às especificações mínimas das normas internacionais, para possibilitar seu uso de forma geral, o que deve ser considerado como um universo bastante amplo, quase sempre sem uma boa caracterização dos carregamentos que estarão submetidos e por vezes, nos mais diversos meios ambientes onde agentes químicos aumentam riscos e falhas.

A METALAC, baseada nestas considerações, produz os parafusos TELLEP cabeça cilíndrica que excedem em muito as propriedades mínimas especificadas em normas internacionais, oferecendo ao mercado um produto comprovadamente diferenciado, garantindo aos usuários total segurança na aplicação.

UNI FORMI ZANDO CONCEITOS

O QUE É:

FADI GA: Tendência de um material quebrarse quando submetido a esforços repetidos. Isto significa que mesmo tendo o fixador suportado o esforço de tração com qual foi inicialmente apertado, o mesmo pode vir a se romper por fadiga durante a vida útil, dependendo das tensões e das velocidades de operações envolvidas.


Unidades de alta pressão explodem, máquinas operatrizes param, mecanismos de direção de automóveis falham e tudo devido à fadiga. Estima-se que 60% de todas as falhas ocorridas com fixadores seja devido à fadiga. Uma vez que as normas internacionais não determinam uma resistência à fadiga mínima para aprovação de um parafuso e devido à falta de conhecimento e principalmente as dificuldades em se controlar os fatores que interferem na resistência à fadiga de um fixador, os parafusos normalmente encontrados no mercado não

têm nenhuma preocupação com essa característica. Existe, entretanto uma equação desenvolvida por Kloos e Thomala, que determina a resistência à fadiga mínima que os fixadores deveriam suportar, ou seja, determina valores máximos de tensões à tração na aplicação, para os quais os parafusos deveriam ter vida infinita, mesmo que submetidos repetidamente a essas tensões.

A resistência à fadiga é profundamente influenciada pela qualidade da rosca. Roscas perfeitas com raio no fundo dos filetes, sem marcas, dobras ou estrias tem resistência aumentada. Fibramento adequado e tratamento térmico apropriado também melhoram esta característica.

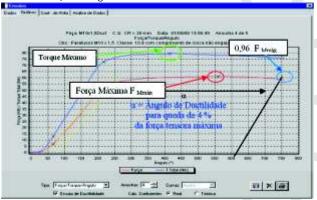
A METALAC, através de um rigoroso controle de projeto, onde conta com o auxílio do software "Deform", e estreito acompanhamento do processo de fabricação, garante ultrapassar os valores de resistência à fadiga da equação de Kloss e Thomala para todos os parafusos TELLEP constantes na tabela (5) da página 48 deste catálogo.

Os três pontos de concentração de tensões em que os parafusos estão mais sujeitos à falha por fadiga são:

DUCTILIDADE: Capacidade de deformação plástica, mantendo as propriedades mecânicas e características de resistência à fadiga sem alteração.

Quanto mais dúctil for o parafuso, maior será sua capacidade de absorção de energia e de resistência a impactos. Parafusos com boa ductilidade podem ser apertados até a zona plástica, momento este em que se obtém a maior resistência do fixador, ou seja, apertados até alongarem sem perder suas propriedades.

Também para esta característica as normas internacionais não definem parâmetros mínimos e, portanto, os parafusos de mercado não


Determinador de Torque e Tensão

contemplam esta importante propriedade.

A METALAC, com a preocupação de propiciar ao parafuso uma melhor ductilidade, utiliza somente aços nobres na fabricação do TELLEP e com isso obtém um tratamento térmico adequado com altas temperaturas de revenimento. O acompanhamento da performance dos mesmos é efetuado através de ensaios em equipamentos DTT (Determinador de Torque e Tensão). Veja a seguir a média dos resultados obtidos em ensaios de ductilidade em uma comparação efetuada entre parafusos TELLEP e da concorrência. Utilizou-se amostragem de 5 peças de cada fabricante do parafuso cabeça cilíndrica com sextavado interno M10x70, classe 12.9.

Gráfico Força x Ângulo

		Ângulo de Ductilidade (°)
METALAC / TELLEP ···	60,8	252
Concorrente A	60,2	209
Concorrente B	53,8	162

Observe que, além de obter uma força maior, o parafuso TELLEP apresenta um ângulo de ductilidade consideravelmente mais elevado. Em termos práticos, isto significa que o parafuso TELLEP tem maior capacidade de alongamento, permitindo conseqüentemente maior número de reutilizações quando apertado na zona plástica e conferindo maior segurança ao usuário.

Salientamos que os valores de força aqui obtidos representam um universo de apenas 5 peças e para efeito de cálculos de dimensionamento devem-se sempre considerar os valores constantes na tabela 1 (pág. 44/45).

RENDI MENTO: Relação entre força tensora máxima aproveitável e a capacidade de geração de força do fixador à tração pura.

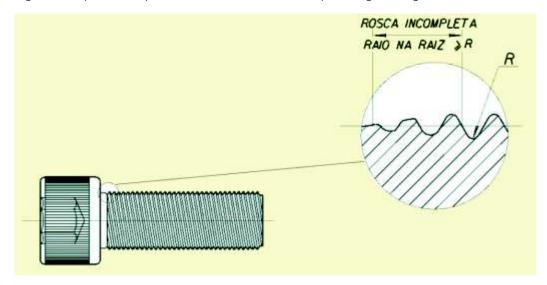
Numa junta aparafusada, o método mais comum para obtenção de força de tração necessária ao travamento é o momento torsor (torque). Na prática, ao aplicar o torque, o parafuso estará submetido a um estado combinado de tensões (torção + tração), ou seja, uma parcela da capacidade de força do fixador será utilizada para vencer os atritos entre as roscas da peça e da contra-peça.

Em outras palavras, quanto maior o atrito, medido pelo coeficiente de atrito, maior será a parcela de energia desperdiçada em torção e que não gera força axial de fechamento da junta. Por outro lado, quanto menor o atrito, maior será a força de fechamento da junta, e portanto, maior será o rendimento.

Mais uma vez as normas internacionais são omissas quanto aos parâmetros de coeficientes de atrito, quer seja na rosca ou sob a cabeça e conseqüentemente os parafusos comuns de mercado não têm coeficientes de atrito controlados.

A METALAC, consciente desta necessidade, através da utilização de óleo protetivo adequado e de fornos de ultima geração que mantêm uma diferenciada qualidade da oxidação térmica, garante que os parafusos TELLEP cabeça cilíndrica são produzidos com coeficientes de atrito de rosca (µG) e sob cabeça (µk) dentro de estreitos limites de variação oscilando entre 0,09 e 0,15 quando testados em máquina de torque tensão. O rigoroso controle dos coeficientes de atrito proporcionam ao TELLEP uma maior capacidade de geração de força tensora e um rendimento muito superior à média de mercado.

TELLEP: SUPERIORIDADE TÉCNICA

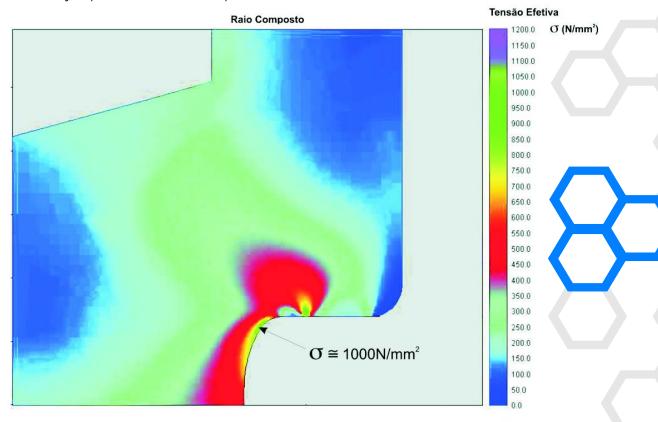

Os produtos TELLEP estão projetados para atender as mais variadas necessidades dos usuários, superando significativamente em diversos aspectos os parâmetros mínimos determinados pelas normas internacionais.

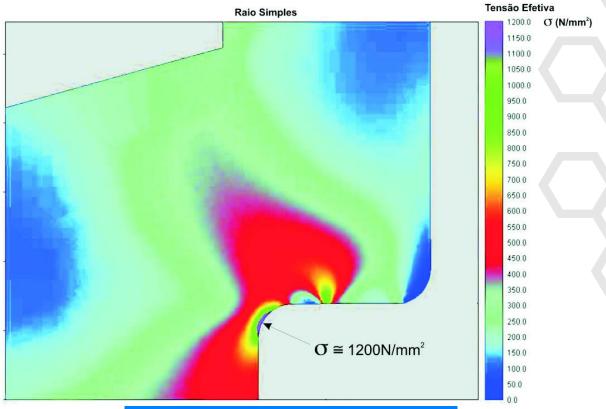
A seguir, encontram-se importantes vantagens de projeto e processo que garantem ao TELLEP Cabeça Cilíndrica maior resistência mecânica e melhor performance nas aplicações:

- a) Saída de rosca 3R.
- b) Encaixe sextavado, suporta maior torque de aperto.
- c) Reduzida dispersão nos coeficientes de atrito.
- d) Raio composto entre cabeça e haste.
- e) Concentricidade e perpendicularidade controladas.
- f) Aço liga de alta qualidade.
- a) Parafusos fabricados simplesmente conforme normas internacionais não contemplam especificações que exijam raio de saída no fundo do filete. Muitas vezes apresentam cantos vivos que, além de serem locais propícios para a propagação de trincas de tempera, são pontos concentradores de tensões e fragilizam o parafuso, podendo levá-lo

à falha por fadiga quando o mesmo for submetido a altas cargas dinâmicas.

Os parafusos TELLEP são produzidos com saída de rosca 3R e com raios nas raízes destes filetes iguais ou maiores aos demais filetes de rosca. Esta característica elimina a concentração de tensão no último filete roscado e minimiza a possibilidade de falha por fadiga na região da saída de rosca.


b) Encaixe sextavado com profundidade rigorosamente controlada e estreita tolerância na abertura de chave, conferem aos parafusos TELLEP melhor contato com a chave, torque de aperto maior e mais preciso, quantidade de metal suficiente na região crítica do raio sob a cabeça e conseqüentemente maior resistência do


fixador.

c) Um importante diferencial dos parafusos TELLEP em relação aos normalizados é sem dúvida a garantia de uma reduzida dispersão nos coeficientes de atrito na rosca e na cabeça do fixador. Enquanto costumeiramente encontram-se coeficientes de atrito variando entre 0,09 e 0,24 nos parafusos comuns de mercado, a Metalac garante através de rigoroso controle durante a fabricação dos parafusos TELLEP, valores compreendidos entre 0,09 e 0,15. Esta homogeneidade de fabricação permite um significativo maior rendimento do fixador.

d) A zona de transição entre cabeça e haste é um local muito crítico de concentração de tensões e as normas internacionais somente especificam um raio mínimo de fabricação.

Em todos os casos que, por geometria da peça ou influência do sextavado, haja possibilidade de ruptura da cabeça, os parafusos TELLEP são fabricados com raio composto na transição entre cabeça e haste, aumentando a resistência à fadiga nesta região. Observe no estudo abaixo, efetuado com software de engenharia "DEFORM", que o raio composto na transição entre a cabeça e haste propicia menor concentração de tensões na região.

- e) Os parafusos TELLEP possuem concentricidade (cabeça / corpo e sextavado interno / corpo) e perpendicularidade (assentamento da cabeça / corpo) controladas, na maioria dos casos com tolerâncias bem mais apertadas que as determinadas pelas normas internacionais, assegurando com isso redução dos atritos e montagem mais fácil e precisa.
- f) As propriedades superiores dos parafusos TELLEP não são acidentais. Os níveis de tensões consistentemente mais altos e a melhor performance à fadiga são resultados da utilização de aço liga de alta qualidade, processos de fabricação controlados e tratamento térmico em fornos de última geração.

Máquina de Fadiga

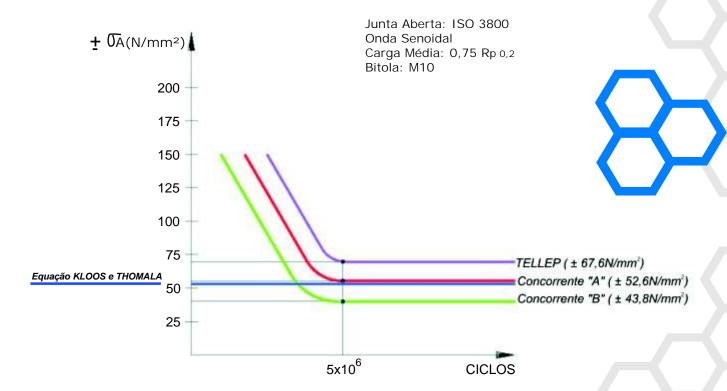
Veja a seguir resultados obtidos em ensaios de resistência à fadiga, efetuados conforme ISO 3800, em parafusos TELLEP cabeça cilíndrica, classe 12.9, M10 x 70, e parafusos similares da concorrência.

Amostragem utilizada: 15 peças de cada fabricante

Tensão de fadiga para 99% de probabilidade de sobrevivência – PU = 99%

Número de ciclos: 5 milhões.

Conforme equação de Kloss e Thomala, tabela (5), pág. 48, parafusos M10 de boa qualidade deveriam resistir a uma tensão de fadiga mínima de = ±52,5 N/mm².


Podemos observar conforme gráfico abaixo, que nos ensaios efetuados, os parafusos TELLEP resistiram a uma tensão de fadiga de

A=±67,6 N/mm², muito superior aos 52,5 N/mm² da equação de Kloss e Thomala, proporcionando uma grande margem de segurança ao projeto.

Quanto aos resultados da concorrência, a situação foi totalmente diferente, visto que os

parafusos do fabricante "B" resistiram somente a uma tensão de fadiga de A=±43,8 N/mm², bastante inferior ao mínimo esperado. Os parafusos do fabricante "A" resistiram a uma tensão de fadiga de

A = ± 52,6 N/mm², muito próxima ao mínimo esperado de 52,5 N/mm² da equação de Kloss e Thomala, não deixando garantias que os outros lotes venham a satisfazer as necessidades das aplicações.

g) Os parafusos TELLEP com cabeça cilíndrica com diâmetro a partir de M5 (#10), possuem identificação na cabeça referentes ao mês e ao ano de sua fabricação, facilitando assim a sua rastreabilidade.

Para melhor compreensão, seguem abaixo os critérios de identificação do lote:

 Mês Janeiro Fevereiro Março Abril Maio Junho Julho Agosto Setembro Outubro Novembro 	Gravação A B C D E F G H I	T L P 6
Dezembro	M	
· Ano	Gravação	

2006

Exemplo: Parafusos TELLEP com gravação L 6, significa que o lote foi produzido no mês de Novembro de 2006. Obs.: Os parafusos TELLEP com cabeça cilíndrica UNRF possuem apenas gravação TLP na cabeça.

TELLEP: ECONOMIA Á VISTA

Observe que a superioridade técnica do TELLEP é transformada, de modo prático, em grande redução de custo através de uma ou mais das seguintes vantagens:

- Menor número de parafusos de mesmo diâmetro.
- Mesmo número de parafusos de menor diâmetro.
- Dimensões menores das peças a serem fixadas com menor peso do conjunto.
- Economia de matéria prima.
- Diminuição do número de furações.
- Montagem mais rápida.

ESCOLHENDO O DI ÂMETRO ADEQUADO DO PARAFUSO

Encontra-se disponível em nosso website para download o Software de Cálculo e o Catálogo Interativo. www.metalac.com.br

Apresentamos a seguir, de maneira simplificada, um roteiro para determinação aproximada do diâmetro adequado do parafuso.

Este processo simplificado atende quase a totalidade das aplicações mais usuais, entretanto existem aspectos específicos dependentes das características geométricas de cada junta aparafusada que podem fugir ao escopo deste método e o setor de Pesquisa e Desenvolvimento da Metalac pode ser consultado para maiores esclarecimentos.

De posse das informações a seguir, calcula-se a força máxima que cada parafuso deverá suportar (F_M) e encontra-se o diâmetro adequado para os mesmos na tabela (1), página 44.

 $F_{\rm B}$: Força extrema na aplicação

N: Número de parafusos que se deseja utilizar

R: Fator multiplicador, obtido na tabela (2), página 46, em função do modo de atuação da força na junta.

 \mathbf{a}_{A} : Fator de aperto, obtido na tabela (3), página 47, em função do método de aperto.

$$F_{M} = \frac{F_{B}}{N} \times R \times A$$

Em se tratando de uma junta de vedação, o número mínimo de parafusos (N') deve ser obtido, conforme segue:

$$N' = \frac{P_J}{D_w + H_{min}} \quad onde:$$

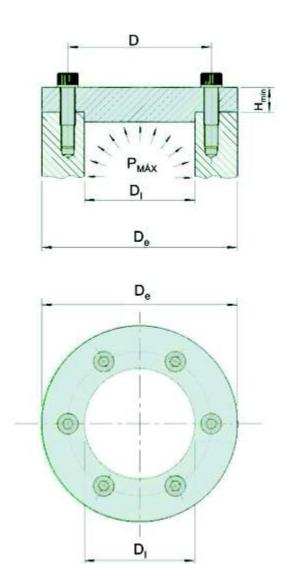
P₁: Perímetro da junta

D_w: Diâmetro de assentamento mínimo do parafuso

H_{mín}: Espessura da junta de menor espessura

EXEMPLO PRÁTICO DE APLICAÇÃO

O exemplo a seguir trata-se da fixação da tampa de um cilindro de pressão em que a força externa (F_B) é originada pela ação da pressão interna (P_{MAX}) sob a tampa. A seguir, encontram-se as características geométricas deste cilindro e como acontece em quase a totalidade das aplicações práticas, esta é uma junta excentricamente solicitada (a força externa não está aplicada exatamente no centro de gravidade da junta) e excentricamente carregada (o eixo do parafuso não coincide com o centro da gravidade da junta).


 H_{min} = 25 mm – Espessura da junta (considera-se a junta de menor espessura).

D = 70 mm – Diâmetro de posicionamento dos furos de passagem dos parafusos.

 $D_i = 57 \text{ mm} - \text{Diâmetro interno do cilindro.}$

 D_e = 107 mm – Diâmetro externo do cilindro.

 $P_{MAX} = 21,55 \text{ N/mm}^2 - Pressão máxima no cilindro.}$

- a) Informações necessárias.
- b) Determinação do diâmetro e do número de parafusos.
- c) Cálculo de torque máximo e mínimo.
- d) Checando a força tensora.
- e) Verificando a resistência à fadiga.

CÁLCULO DO DIÂMETRO DO PARAFUSO

a) Informações necessárias

Força externa na aplicação. * F_B = 54.990 N Número do parafuso que se deseja utilizar. N=4 Junta aparafusada com necessidade de vedação e com diâmetro (D) de 70mm Espessura da junta de menor espessura. H_{min} = 25mm Força dinâmica e excêntrica. R=2,5 - vide tabela(2), página 46

Aperto com chave de torque manual e superfície lubrificada. $_{A}$ = 1,8 vide tabela (3), página 47

*Neste caso a força F_B é obtida, conforme segue:

 $F_B = P_{M\dot{A}X} \; X \; A_{tampa}$

P_{MÁX}: Máxima pressão interna do cilindro=21,55N/mm²

 A_{tampa} : Área da tampa sob pressão = $\frac{\pi (D_1)^2}{4} = \frac{\pi (57)^2}{4} = 2.551,76 \text{ mm}^2$

 $F_{B} = 21,55x2.551,76 = 54.990 \,\text{N}$

b) Determinação do diâmetro e do número de parafusos

$$F_{M} = \frac{F_{B}}{N} \times R \times A = \frac{-54.990}{4} \times 2.5 \times 1.8 = 61.864 \text{ N}$$

Com F_{M} = 61.864N, encontra-se na tabela (1), página 44, o próximo parafuso TELLEP de maior capacidade. Neste caso é o TELLEP Cabeça Cilíndrica M12, que suporta 61.943 N.

Observe que se o parafuso fosse um DIN 912 classe 12.9 normalmente encontrado no mercado, o diâmetro escolhido deveria ser M14.

Como se trata de uma junta de vedação temos que verificar se o número de parafusos (N') é satisfatório na aplicação através da expressão: $N' = \frac{P_J}{D_W + H_{min}}$

$$P_{i} = \Pi_{XD} = \Pi_{X70} = 219,91 \text{ mm}$$

 $\overset{\circ}{D_W}$: Diâmetro de assentamento mínimo do parafuso TELLEP Cabeça Cilíndrica M12(veja página 20) =17,23mm $\overset{\circ}{H_{min}}$: Espessura da junta de menor espessura = 25mm

$$N' = \frac{P_J}{D_W + H_{min}} = \frac{219,91}{17,23+25} = 5,21 \quad \text{Portanto, nesta aplicação, deve-se utilizar 6 ou mais parafusos.}$$

Deve-se então recalcular $F_{\rm M}$ para utilização de 6 parafusos, uma vez que o número de 4 parafusos previamente definidos não atenderá à condição de vedação da junta.

$$F_{M} = F_{B} \times R \times A = 54.990 \times 2.5 \times 1.8 = 41.243 \text{ N}$$

Com F_M = 41.243N, encontra-se na tabela (1), página 44, o próximo parafuso TELLEP de maior capacidade. Neste caso é o TELLEP Cabeça Cilíndrica M10 que suporta 42.478N. Observe que se o parafuso fosse um DIN 912 classe 12.9 normalmente encontrado no mercado, o diâmetro escolhido deveria ser M12.

Mudando-se o diâmetro do parafuso, altera-se automaticamente $D_{\rm w}$ e se deve checar novamente se o número de parafusos irá atender a condição de vedação da junta.

 D_w : Diâmetro de assentamento mínimo do parafuso TELLEP Cabeça Cilíndrica M10, (veja página 20) = 15,33mm

$$N' = \frac{P_J}{D_W + H_{min}} = \frac{219,91}{15,33+25} = 5,45$$
 Portanto, 6 parafusos satisfazem a aplicação.

Agora você já determinou que serão utilizados 6 parafusos TELLEP Cabeça Cilíndrica M10.

c) Cálculo do torque máximo e mínimo

A força tensora máxima ($F_{Mm\acute{a}x}$) a ser suportada pelo parafuso foi calculada anteriormente em 41.243N e o método de aperto escolhido foi por controle de torque, portanto com A igual a 1,8. A força tensora mínima ($F_{Mm\acute{i}n}$) será:

$$F_{Mmin} = \frac{F_{Mmax}}{A} = \frac{41.243 \text{ N}}{1.8} = 22.913 \text{ N}$$

O próximo passo é determinar o torque (M_A) mínimo a ser aplicado de modo a garantir a força mínima necessária, que é representado pela expressão:

$$M_A = F_M \times d \times K$$

Onde:

d: é o diâmetro nominal do fixador.

k: é o coeficiente de torque em função das características dimensionais do fixador e da junta, do coeficiente de atrito da rosca ($\mu_{\rm G}$) e do coeficiente de atrito da superfície do apoio da cabeça ($\mu_{\rm K}$).

Em função de um rigoroso controle durante a fabricação dos produtos TELLEP, a Metalac garante valores de μ_G e μ_K entre 0,09 e 0,15.

Na tabela (4), página 48, pode-se obter o coeficiente K em função de μ_G e μ_K e do passo. Para parafuso TELLEP M10x1,5, na pior da hipótese, teremos μ_G e μ_K = 0,15 e, portanto, K= 0,199. No outro extremo teremos μ_G e μ_K = 0,09 e, portanto, K = 0,128.

Assim o menor torque que garante a obtenção da força mínima necessária é calculado pela expressão:

$$\begin{array}{l} M_{Amin} = F_{Mmin} \ x \ d \ x \ K_{máx} \\ M_{Amin} = 22.913 \ x \ 10 \ x \ 0,199 \\ M_{Amin} = 45.597 \ Nmm = 45,60 \ Nm \end{array}$$

Sendo de 45.597 Nmm o torque mínimo, vamos determinar o torque máximo.

$$\begin{array}{l} M_{Am\acute{a}x} = F_{Mm\acute{a}x} \; x \; d \; x \; K_{m\acute{i}m} \\ M_{Am\acute{a}x} = \; 41.243 \; x \; 10 \; x \; 0,128 \\ M_{Am\acute{a}x} = \; 52.791 \; Nmm \; = \; 52,8 \; Nm \end{array}$$

d) Checando a força tensora

Em algumas montagens coincidirão o torque máximo com os atritos mínimos, e neste caso você terá a força tensora mais alta. Como a força máxima calculada é 41.243 N e a máxima força que o M10 (para condições de atrito mínimo μ_G e μ_K = 0,09, K=0,128, ver tabela 4, página 48) suporta é 42.478 N, podemos reajustar os torques e as forças máximas e mínimas de modo a utilizar o máximo possível do rendimento do parafuso escolhido. Assim:

$$\begin{split} F_{Mmin} = & \underline{F_{Mm\acute{a}x}} = \underline{42.478} = 23.599 \text{ N} \\ & A & 1.8 \\ M_{Amin} = 23.599 \times 0,199 \times 10 \\ M_{Amin} = 46.962 \text{ Nmm} = 46,96 \text{ Nm} \\ e \\ M_{Am\acute{a}x} = 42.478 \times 0,128 \times 10 \\ M_{Am\acute{a}x} = 54.371,84 \text{ Nmm} = 54,37 \text{ Nm} \end{split}$$

Conforme tabela (1), página 44, observe que o parafuso TELLEP M10 selecionado suporta força tensora de 42.478 N e portanto satisfaz esta áplicação.

Efetivamente a variação de força tensora nesta aplicação será de 23.599 N à 42.478 N.

e) Verificando a resistência à fadiga

Em função dos esforços atuantes, dos módulos de elasticidade das juntas e do parafuso e das características dimensionais da junta, calcula-se a resistência à fadiga mínima que o parafuso deverá resistir de modo e ter vida infinita na aplicação. Neste exemplo, e resistência mínima do parafuso á fadiga foi calculada em 50,08 N/mm²*.

Na tabela (5), página 48, deste catálogo encontrase os valores mínimos de resistência à fadiga que a METALAC garante para os parafusos TELLEP cabeça cilíndrica. Como fixador escolhido foi o TELLEP cabeça cilíndrica com diâmetro M10, a resistência à fadiga mínima garantida pela METALAC é de 52,5 N/mm² e, portanto satisfaz plenamente a necessidade desta aplicação.

Observe que os resultados de resistência à fadiga encontrados em parafusos com sextavado interno M10 da concorrência não garantiram os valores necessários a esta aplicação (vide resultados de ensaios na página 13) e portanto se os mesmos fossem utilizados, neste caso específico, teriam vida útil comprometida e certamente se romperiam prematuramente.

*Os cálculos para a obtenção da resistência mínima à fadiga não foram colocados nesta catálogo devido à extensão e complexidade dos mesmos, entretanto estes cálculos estão disponíveis na METALAC para consultas e fazem parte de cursos que a METALAC ministra aos usuários de seus produtos.

ECONOMI ZANDO COM TELLEP

Suponha agora que, ao invés de ter escolhido o parafuso TELLEP Cabeca Cilíndrica M10, você tenha optado por um parafuso DIN 912 da concorrência, que simplesmente atenda às normas internacionais. Neste caso, conforme tabela (1), página 44, o diâmetro mínimo do parafuso para suportar a força de trabalho de 41.243 N será M12 e não mais M10.

A força tensora máxima $(F_{Mm\acute{a}x})$ a ser suportada pelo parafuso e o método de aperto escolhido permanecem os mesmos do exercício anterior, portanto a força tensora mínima (F_{Mmín}) também será a mesma:

$$F_{Mmin} = \frac{F_{Mmáx}}{1.8} = \frac{41.243 \text{ N}}{1.8} = 22.913 \text{ N}$$

Para obtenção do torque (M_A) mínimo a ser aplicado de modo a garantir a força necessária, volta-se a

expressão: $M_{Amin} = F_{Mmin} \times d \times K_{max}$. Como k é função dos coeficientes de atrito da rosca (μ_G) e da superfície de apoio da cabeça (μ_K), deve-se agora utilizar a variação nos valores de μ_G e μ_K entre 0,09 e 0,24 que são os normalmente encontrados nos parafusos de mercado e não os valores de μ_G e μ_K entre 0,09 e 0,15 garantidos nos parafusos TELLEP. Conforme tabela (4), página 48, agora com os valores de μ_G e μ_K = 0,09 e 0,24 e parafusos DIN 912 M12x1,75, na pior hipótese teremos μ_G e μ_K = 0,24 e portanto k=0,304, no outro extremo teremos μ_G e μ_{κ} =0,09 e portanto k= 0,128.

Assim, temos: $M_{Amin} = F_{Mmin} \times d \times K_{máx}$ $M_{Amin} = 22.913 \times 12 \times 0,304$ $M_{Amin} = 83.587 \text{ Nmm} = 83,6 \text{ Nm}$

Sendo de 83.587 Nmm o torque mínimo e adotando-se 15% de tolerância de trabalho, teremos o torque máximo de 96.125 Nmm.

Em algumas montagens coincidirá o torque máximo com os atritos mínimos, e neste caso você terá a força tensora mais alta. Vamos agora checar se o parafuso escolhido suporta esta possível força tensora

Voltando a tabela (4), página 48, quando este fato ocorre, teremos μ_G e μ_K = 0,09 e portanto K=0,128 e M_{Amáx}= 96.125 Nmm, assim a força tensora máxima será:

$$\begin{aligned} & M_{Am\acute{a}x} = F_{Mm\acute{a}x} \ x \ d \ x \ K_{min} \\ & 96.125 = F_{Mm\acute{a}x} \ x \ 12 \ x \ 0,128 \\ & F_{Mm\acute{a}x} = 62.581 \ N \end{aligned}$$

Conforme a tabela (1), página 44, observe que o parafuso DIN 912 M12 x 1,75 selecionado suporta força tensora de 54.907 N e portanto não satisfaz esta aplicação. Neste, caso deve-se selecionar o parafuso DIN 912 M14x2.

Observe que, comparando-se o parafuso TELLEP M10 adequado para esta aplicação e o parafuso de mercado DIN 912 M14x2, além da significativa diferença no custo dos parafusos, provavelmente implicará em dimensões maiores das peças a serem fixadas, elevação de peso do conjunto, furações maiores e outros aspectos que tornarão o custo total bem mais elevado.

TELLEP CABEÇA CILÍNDRICA

Ago liga termicamente tratado

Aço liga alta qualidade, tratado termicamente em fornos computadorizados, propiciando a obtenção de uma estrutura mais homogênea e a máxima resistência sem fragilidade.

Concentricidade controlada

Cabeça / corpo e sextavado interno / corpo asseguram maior facilidade e precisão de montagem.

Encaixe do sextavado profundo e controlado

Proporciona melhor contato com a chave; permite maior reutilização do parafuso; Possibilita torque de aperto maior e mais preciso.

Raio composto

O raio composto sob a cabeça combina dois raios diferentes para distribuir melhor as tensões, sem sacrifício da área de apolo; duplica a resistência à fadiga da junção entre a cabeça e a haste.

Saída de rosca 3R

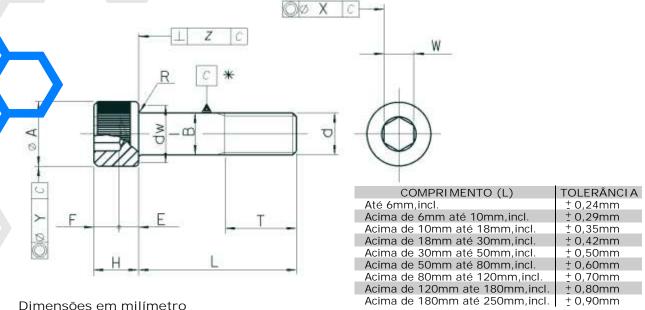
Dispersa as tensões localizadas, proporcionando maior resistência à fadiga

Cabeça recartilhada

Para um manuseio mais fácil e montagem mais precisa.

Gravação e Rastreabilidade

Parafusos com diâmetros M5 (#10) e acima possuem identificação TLP, mês e ano de fabricação na cabeça; o que possibilitará melhor rastreabilidade do produto.



PARAFUSOS DE CABEÇA CILÍNDRICA COM SEXTAVADO INTERNO

Métrico - DIN 912 / ISO 4762

Dimensões em milímetro

Diâm	Passo	Α	Dw	В	Е	F	Н	R	W	Χ	Υ	Z	T**	RT**	L**
Nom d		Mín.	Mín.	Máx. Mín.	Mín.	Mín.	Máx Mín.	Mín.	Máx. Mín.	Máx.	Máx.	Máx.	Mín.	Ref.	Max. Mín.
МЗ	0,5	5,68 5,32	5,07	3,00 2,86	1,15	1,30	3,00 2,86	0,10	2,58 2,52	0,28	0,36	0,10	18	20	6 30
M4	0,7	7,22 6,78	6,53	4,00 3,82	1,40	2,00	4,00 3,82	0,20	3,08 3,02	0,36	0,44	0,10	20	25	6 50
M5	0,8	8,72 8,28	8,03	5,00 4,82	2,00	2,50	5,00 4,84	0,20	4,07 4,02	0,36	0,44	0,15	22	25	8 90
M6	1	10,22 9,78	9,38	6,00 5,82	2,50	3,00	6,00 5,80	0,25	5,08 5,02	0,36	0,44	0,15	24	30	8 100
M8	1,25	13,27 12,73	12,33	8,00 7,78	3,00	4,00	8,00 7,64	0,40	6,14 6,02	0,44	0,54	0,18	28	35	10 140
M10	1,5	16,27 15,73	15,33	10,00 9,78	4,00	5,00	10,00 9,64	0,40	8,175 8,025	0,44	0,54	0,24	32	40	12 200
M12	1,75	18,27 17,73	17,23	12,00 11,73	4,80	6,00	12,00 11,57	0,60	10,175 10,025	0,54	0,54	0,27	36	50	16 200
M14	2	21,33 20,67	20,17	14,00 13,73	5,80	7,00	14,00 13,57	0,60	12,212 12,032	0,54	0,66	0,31	40	55	25 180
M16	2	24,33 23,67	23,17	16,00 15,73	6,80	8,00	16,00 15,57	0,54	14,212 14,032	0,54	0,66	0,34	44	60	25 200
M18	3 2,5	27,33 26,67	25,87	18,00 17,73	7,80	9,00	18,00 17,57	0,60	14,212 14,032	0,54	0,66	0,38	48	65	40 200
M20	2,5	30,33 29,67	28,87	20,00 19,67	8,60	10,00	20,00 19,48	0,80	17,23 17,05	0,66	0,66	0,42	52	70	35 200
M22	2,5	33,39 32,61	31,81	22,00 21,67	9,40	11,00	22,00 21,48	0,80	17,23 17,05	0,66	0,78	0,45	56	70	50 120
M24	3	36,39 35,61	34,81	24,00 23,67	10,40	12,00	24,00 23,48	0,80	19,275 19,065	0,66	0,78	0,50	60	80	40 200
M27	3	40,39 39,61	38,61	27,00 26,67	11,90	13,50	27,00 26,48	1,00	19,275 19,065	0,66	0,78	0,57	66	90	70 200
M30	3,5	45,39 44,61	43,61	30,00 29,67	13,10	15,50	30,00 29,48	1,00	22,275 22,065	0,66	0,78	0,64	72	100	70 200
M36	4	54,46 53,54	52,54	36,00 35,61	15,30	19,00	36,00 35,38	1,00	27,275 27,065	0,78	0,92	0,77	84	110	80 200

^{*} A referência "C" deve estar distante 1xd (diâmetro nominal do parafuso) a partir do assentamento da cabeça

Notas:

Material: Aço liga de alta qualidade Tratamento térmico: Dureza 39-44 HRC

(12.9)

Tensão de tração: 1240 N/mm² mín

Classe de rosca: 5g6g

^{**} Parafusos com comprimento "L" até "RT" devem ter rosca total. Acima de "RT" o comprimento de rosca será igual a "T".

^{***} Faixa de comprimentos fabricados. Demais comprimentos sob consulta.

COMERCIAL ARRUELA IA (3)	FORÇA (KN)	2,80	4,95	7,77	11,19	19,87	30,96	44,50	60,48	78,34	99,79	122,40	147,30	176,26	221,59	274,31	330,21	393,94
ALUMÍNIO COMERCIAL COM UTIL. ARRUELA PLANA (3)	TORQUE (Nm)	7	4	80	13	32	62	106	168	246	355	481	633	831	1.167	1.609	2.119	2.765
COM UTIL. PLANA (2)	FORÇA (KN)	2,80	4,87	7,90	11,19	20,41	32,39	47,11	64,58	84,42	107,55	131,91	158,75	189,95	238,81	295,62	355,87	424,56
AÇO 1030 COM UTIL. ARRUELA PLANA (2)	TORQUE (Nm)	2	4	80	13	33	64	112	179	265	383	518	682	968	1.257	1.735	2.284	2.980
AÇO 1045 COM UTIL. ARRUELA PLANA (2)	FORÇA (KN)	2,80	4,87	7,90	11,19	20,41	32,39	47,11	64,58	84,42	107,55	131,91	158,75	189,95	238,81	295,62	355,87	424,56
AÇO 1045 ARRUEL⊿	TORQUE (Nm)	2	4	8	13	33	64	112	179	265	383	518	682	968	1.257	1.735	2.284	2.980
JNDIDO M UTIL. PLANA (2)	FORÇA (KN)	2,80	4,87	7,90	11,19	20,41	32,39	47,11	64,58	84,42	107,55	131,91	158,75	189,95	238,81	292,62	355,87	424,56
FERRO FUNDIDO GG15 COM UTIL. ARRUELA PLANA (2)	TORQUE (Nm)	7	4	8	13	33	64	112	179	265	383	518	682	968	1257	1735	2284	2980
OMERCIAL	FORÇA (KN)	0,57	1,01	1,57	2,27	4,01	6,25	8,99	12,22	15,83	20,17	24,73	29,76	35,62	44,78	54,98	66,73	79,60
ALUMÍNIO COMERCIAL (1)	TORQUE (Nm)	6,0	-	2	3	9	12	21	34	20	72	26	128	168	236	320	428	559
030	FORÇA (KN)	1,59	2,83	4,40	6,35	11,24	17,52	25,18	34,22	44,32	56,46	69,25	83,34	99,727	125,38	155,20	186,83	222,89
AÇO 1030 (1)	TORQUE (Nm)	-	2	4	œ	18	35	09	92	139	201	272	358	470	099	911	1.199	1.565
045	FORÇA (KN)	2,65	4,72	7,33	10,59	18,74	29,19	41,96	57,03	73,87	94,11	115,42	138,90	166,21	208,96	258,67	371,49	311,39
AÇO 1045	TORQUE (Nm)	2	4	7	13	30	58	100	158	232	335	453	265	784	1.100	1.518	1.998	2.608
OIDO GG15	FORÇA (KN)	2,27	4,05	6,28	80'6	16,06	25,02	35,96	48,89	63,32	99'08	98,93	119,06	142,45	179,11	221,72	266,90	318,42
FERRO FUNDIDO GG15 (1)	TORQUE (Nm)	-	က	9	7	56	20	98	136	199	287	389	511	672	943	1.301	1.713	2.235
FERRO FUNDIDO GG25 OU SUPERIOR	FORÇA (KN)	2,81	4,87	7,90	11,19	20,41	32,39	47,11	64,58	84,425	107,55	131,91	158,75	189,95	238,81	292,62	355,87	424,56
FERRO F	TORQUE (Nm)	7	4	80	13	33	64	112	179	265	383	518	682	968	1257	1735	2284	2980
PASSO		0,5	2,0	8,0	-	1,25	1,5	1,75	2	2	2,5	2,5	2,5	က	က	3,5	3,5	4
BITOLA PASSO		M3	4 4	M5	M6	M8	M10	M12	41M	M16	M18	M20	M22	M24	M27	M30	M33	M36

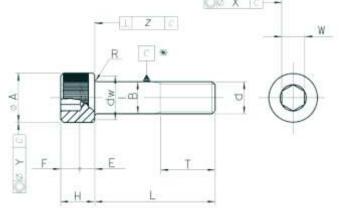
TORQUE RECOMENDADO (Nm) E FORÇA TENSORA MÍMIMA (KN)

(1) O torque, neste, caso é limitado em função da baixa resistência à compressão do material da contra-peça. Aconselha-se a utilização de

uma arruela plana da aço para distribuir a pressão superficial.

(2) Arruela plana em aço temperado com dureza entre 40 e 43 HRC e diâmetro externo mínimo = 1,2 x diâmetro da cabeça do parafuso.

(3) Arruela plana de aço temperado com dureza entre 40 e 43 HRC e diâmetro externo mínimo = 1,6 x diâmetro da cabeça do parafuso.



PARAFUSOS DE CABEÇA CILÍNDRICA COM SEXTAVADO INTERNO

Polegada – ASME B 18.3

			Comprimento	(L)	
	Diâmetro d	Até 1" incl.	Acima de 1" até 2 1/2" incl.	Acima de 2 1/2" até 6" incl.	Acima de 6"
			Tolerân	cia 5	
)	# 4 até 3/8" incl.	- 0,03"	- 0,04"	- 0,06"	- 0,12"
	7/16″ até 3/4" incl.	- 0,03"	- 0,06"	- 0,08"	- 0,12"
	7/8 até 1 1/2″ incl.	- 0,03"	- 0,05"	- 0,14"	- 0,20"

Diâm.		Α	Dw	В	Е	F	Н	R	W	Х	Υ	Z	T**	RT**	L***
Nom	Fios por	Máx.	Mín.	Máx.	Mín.	Mín.	Máx.	Mín.	Máx.	Máx.	Máx.	Máx.	Mín.	Ref.	Máx.
d	polegada	Mín.		Mín.			Mín. D	imensõe	Mín. es em m	ilímetro	S				Mín.
#4	40 UNRC	4,65 4,47	4,21	2,84 2,73	0,96	1,29	2,84 2,75	0,13	2,42 2,38	0,12	0,15	0,07	19,05	-	3/16" 1/2"
#5	40 UNRC	5,21 5,03	4,77	3,17 3,05	1,09	1,45	3,17 3,07	0,15	2,42 2,38	0,12	0,15	0,08	19,05	-	1/4" 1/2"
#6	32 UNRC	5,74 5,54	5,28	3,50 3,38	1,19	1,63	3,50 3,40	0,15	2,82 2,78	0,12	0,15	0,09	19,05	1″	1/4" 1"
#8	32 UNRC	6,86 6,65	6,39	4,17 4,03	1,42	1,96	4,16 4,04	0,18	3,62 3,57	0,12	0,15	0,11	22,35	1″	1/4" 1 1/2"
#10	24 UNRC	7,92 7,69	7,43	4,83 4,67	1,65	2,28	4,82 4,70	0,23	4,03 3,97	0,14	0,15	0,13	22,35	1″	1/4" 2 1/2"
#10	32 UNRF	7,92 7,69	7,43	4,83 4,67	1,65	2,28	4,82 4,70	0,23	4,03 3,97	0,14	0,15	0,13	22,35	1″	1/4" 2"
1/4"	20 UNRC	9,52 9,27	8,77	6,35 6,18	2,41	3,05	6,35 6,20	0,23	4,82 4,76	0,19	0,15	0,15	25,4	1 1/4"	3/8" 4"
1/4 "	28 UNRF	9,52 9,27	8,77	6,35 6,18	2,41	3,05	6,35 6,20	0,23	4,82 4,76	0,19	0,15	0,15	25,4	1 1/4"	3/8" 2"
5/16"	18 UNRC	11,91 11,61	11,11	7,94 7,75	3,02	3,83	7,92 7,77	0,30	6,42 6,35	0,23	0,16	0,20	28,45	1 1/2"	3/8" 5"
5/16″	24 UNRF	11,91 11,61	11,11	7,94 7,75	3,02	3,83	7,92 7,77	0,30	6,42 6,35	0,23	0,16	0,20	28,45	1 1/2"	1/2" 3"
3/8"	16 UNRC	14,27 13,97	13,47	9,52 9,34	3,63	4,62	9,52 9,35	0,38	8,02 7,94	0,28	0,19	0,24	31,75	1 1/2"	1/2" 6"
3/8"	24 UNRF	14,27 13,97	13,47	9,52 9,34	3,63	4,62	9,52 9,35	0,38	8,02 7,94	0,28	0,19	0,24	31,75	1 1/2"	1/2" 2 1/2"
7/16"	14 UNRC	16,66 16,31	15,55	11,11 10,91	4,22	5,41	11,12 10,92	0,46	9,62 9,52	0,33	0,22	0,28	35,05	1 3/4"	3/4" 3 1/2"
7/16″	20 UNRF	16,66 16,31	15,55	11,11 10,91	4,22	5,41	11,12 10,92	0,46	9,62 9,52	0,33	0,22	0,28	35,05	1 3/4"	1" 2 1/2"
1/2"	13 UNRC	19,05 18,67	17,91	12,70 12,49	4,83	6,22	12,70 12,50	0,51	9,62 9,52	0,38	0,25	0,32	38,10	2"	3/4" 8"
1/2"	20 UNRF	19,05 18,67	17,91	12,70 12,49	4,83	6,22	12,70 12,50	0,51	9,62 9,52	0,38	0,25	0,32	38,10	2"	3/4" 3"
1/2"	12 BSW	19,05 18,67	17,91	12,70 12,49	4,83	6,22	12,70 12,50	0,51	9,62 9,52	0,38	0,25	0,32	38,10	2"	3/4" 8"
5/8"	11 UNRC	23,82 23,39	22,63	15,87 15,65	6,04	7,80	15,87 15,65	0,61	12,83 12,70	0,95	0,32	0,40	44,45	2 1/4"	1" 10"
5/8"	18 UNRF	23,82 23,39	22,63	15,87 15,65	6,04	7,80	15,87 15,65	0,61	12,83 12,70	0,95	0,32	0,40	44,45	2 1/4"	1 1/4" 4"
3/4"	10 UNRC	28,57 28,12	27,36	19,05 18,81	7,24	9,40	19,05 18,80	0,76	16,03 15,87	1,14	0,38	0,48	50,80	2 3/4"	1" 10"
7/8"	9 UNRC	33,32 32,84	31,82	22,22 21,96	8,46	10,97	22,22 21,94 25,40	0,86	19,23 19,05 19,23	1,33	0,44	0,56	57,15	3″	1 1/2" 10" 1 1/2"
1"	8 UNRC	38,10 37,57	36,55	25,40 25,11	9,65	12,57	25,09	1,02	19,05	1,52	0,51	0,65	63,50	3 1/4"	10"
1 1/4"	7 UNRC	47,62 47,04	46,28	31,75 31,33	12,07	15,75	31,75 31,39	1,27	22,48 22,22	1,90	0,63	0,81	79,25	5″	2 1/2" 12"
1 1/2"	6 UNRC	57,15 56,49	55,73	38,10 37,64	14,48	18,92	38,10 37,72	1,52	25,65 25,40	2,28	0,76	0,98	95,25	6"	3" 12"

^{*}A referência "C" deve distante 1xd (diâmetro nominal do parafuso) a partir do assentamento da cabeça.

Votas

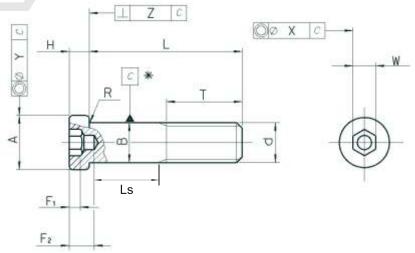
Material: Aço liga de alta qualidade Tratamento térmico: Dureza 39 – 44 HRC Tensão de tração: 1240N/mm² mín. Classe de rosca: # 0 até 1"- 3A

Acima de 1" - 2A

^{**}Parafusos com comprimento "L" até "RT" devem ter rosca total. Acima de "RT" o comprimento de rosca será igual a "T".

^{****}Faixa de comprimentos fabricados. Demais comprimentos sob consulta.

TORQUE RECOMENDADO (Nm) E FORÇA TENSORA MÍNIMA (KN)


	OMERCIAL RUELA PLANA)	FORÇA (KN)	2,16	2,87	3,24	2,06	6,27	7,26	11,50	11,21	18,46	18,09	27,21	26,51	36,02	35,20	47,81	46,60	76,63	74,56	111,73	150,68	199,26	321,76	466,02
	ALUMÍNIO COMERCIAL COM UTIL. ARRUELA PLANA (3)	TORQUE (Nm)	-	2	2	4	9	7	15	14	29	28	52	49	79	9/	120	114	240	227	418	929	991	1995	3463
	COM UTIL. A PLANA ()	FORÇA (KN)	2,16	2,87	3,24	2,06	6,27	7,26	11,50	13,30	19,05	21,25	28,21	32,17	38,74	43,49	51,78	58,61	82,56	93,75	122,33	168,98	221,70	354,83	514,57
\\.	AÇO 1030 COM UTIL ARRUELA PLANA (2)	TORQUE (Nm)	-	2	2	4	9	7	15	17	30	33	54	29	85	93	130	143	259	285	458	735	1102	2200	3823
	OM UTIL.	FORÇA (KN)	2,16	2,87	3,24	5,06	6,27	7,26	11,50	13,30	19,05	21,25	28,21	32,17	38,74	43,49	51,78	58,61	82,56	93,75	122,33	168,98	221,70	354,83	514,57
	AÇO 1045 COM UTIL. ARRUELA PLANA (2)	TORQUE (Nm)	-	2	2	4	9	7	15	17	30	33	54	69	85	93	130	143	259	285	458	735	1102	2200	3823
)	DIDO GG15 RUELA PLANA)	FORÇA (KN)	2,16	2,87	3,24	5,06	6,27	7,26	11,50	13,30	19,05	21,25	28,21	32,17	38,74	43,49	51,78	58,61	82,56	93,75	122,33	168,98	221,70	354,83	514,57
)	FERRO FUNDIDO GG15 COM UTIL. ARRUELA PLANA (2)	TORQUE (Nm)	-	2	2	4	9	7	15	17	30	33	54	69	85	93	130	143	259	285	458	735	1102	2200	3823
) } }	OMERCIAL)	FORÇA (KN)	0,54	0,72	0,94	1,4	1,93	1,89	2,13	2,07	3,56	3,49	5,42	5,28	7,02	98'9	9,51	9,27	15,72	15,30	23,21	31,31	41,92	70,30	102,74
J	ALUMÍNIO COMERCIAL (1)	TORQUE (Nm)	9,0	0,5	~	-	2	2	က	က	9	5	10	10	15	15	24	23	49	47	87	136	208	436	763
` .	1030	FORÇA (KN)	1,93	2,37	3,22	2,99	4,23	4,13	5,96	5,80	26'6	9,76	15,16	14,78	19,65	19,20	26,62	25,95	44,02	42,83	65,37	87,66	133,17	194,99	287,85
)	AÇO 1	TORQUE (Nm)	-	2	2	ဇ	4	4	8	7	7	15	59	27	43	41	29	63	138	130	245	381	662	1209	2139
	1045	FORÇA (KN)	2,15	2,85	3,24	5,07	6,30	7,28	9,93	9,67	16,61	16,28	25,28	24,63	32,74	32,00	44,37	43,25	73,37	71,39	108,35	146,09	195,53	328,02	479,44
)	AÇO 1045 (1)	TORQUE (Nm)	-	2	2	4	9	7	13	12	26	25	48	45	72	69	111	106	230	217	406	635	973	2034	3562
] - 	FERRO FUNDIDO GG15 (1)	FORÇA (KN)	2,15	2,87	3,24	5,06	6,27	7,26	8,51	8,29	14,24	13,95	21,66	21,11	28,07	27,43	38,03	37,07	62,89	61,19	92,87	125,22	167,69	281,20	410,97
)	FERRO FUN	TORQUE (Nm)	-	2	2	4	9	7	7	10	23	22	41	39	62	59	92	06	197	186	348	544	834	1744	3054
)	UNDIDO	FORÇA (KN)	2,16	2,87	3,24	5,06	6,27	7,26	11,34	11,06	18,98	18,60	28,21	28,14	37,42	36,57	50,71	49,42	82,56	81,59	122,33	166,96	221,70	354,83	514,57
	FERRO FUNDIDO GG25 OU SUPERIOR	TORQUE (Nm)	-	2	2	4	9	7	15	14	30	29	54	52	82	78	127	121	259	248	458	726	1102	2200	3823
	PASSO		40 UNRC	40 UNRC	32 UNRC	32 UNRC	24 UNRC	32 UNRF	20 UNRC	28 UNRF	18 UNRC	24 UNRF	16 UNRC	24 UNRF	14 UNRC	20 UNRF	13 UNRC	20 UNRF	11 UNRC	18 UNRF	10 UNRC	9 UNRC	8 UNRC	7 UNRC	6 UNRC
	BITOLA		#	9#	9#	#8	#10	#10	1/4"	1/4"	5/16"	5/16"	3/8"	3/8,,	7/16"	7/16"	1/2"	1/2"	2/8,,	2/8,,	3/4"	1/8"	-	1 1/4"	1 1/2"

(1) O torque, neste caso, é limitado em função da baixa resistência à compressão do material da contra – peça. Aconselha-se a utilização de uma arruela plana da aço para distribuir a pressão superficial.

(2) Arruela plana em aço temperado com dureza entre 40 e 43 HRC e diâmetro externo mínimo = 1,2 x diâmetro da cabeça do parafuso. (3) Arruela plana em aço temperado com dureza entre 40 e 43 HRC e diâmetro externo mínimo = 1,6 x diâmetro da cabeça do parafuso.

PARAFUSOS DE CABEÇA CILÍNDRICA BAIXA COM SEXTAVADO INTERNO DIN 6912 / DIN 7984

DIN 6912- CABEÇA BAIXA COM GUIA DE CHAVE

Dimensões em milímetros

Difficition	JCJ CITT	11111111	,1103												
Diâm.	Passo	Α	В	F1	F2	Н	R	W	Χ	Υ	Z	Ls	T****	RT**	L***
Nom.	Normal	Máx.	Máx.	Máx.	Máx.	Máx.		Máx.	Máx.	Máx.	Máx.		Ref.	Ref.	Máx.
d		Mín.	Mín.	Mín.	Mín.	Mín.	Mín.	Mín.				Mín.			Mín.
M4	0,7	7,00 6,78	4,00 3,82	1,72 1,48	3,60 3,30	2,80 2,66	0,20	3,10 3,02	0,36	0,44	0,10	1,4	14	16	8 25
M5	0,8	8,50 8,28	5,00 4,82	2,12 1,88	4,30 4,00	3,50 3,32	0,20	4,12 4,02	0,36	0,44	0,15	1,8	16	20	10 30
M6	1	10,00 9,78	6,00 5,82	2,62 2,38	5,30 5,00	4,00 3,82	0,25	5,14 5,02	0,36	0,44	0,15	2,5	18	25	10 40
M8	1,25	13,00 12,73	8,00 7,78	3,12 2,88	6,86 6,50	5,00 4,82	0,40	6,14 6,02	0,44	0,54	0,18	3,2	22	30	12 40
M10	1,5	16,00 15,73	10,00 9,78	3,65 3,35	7,86 7,50	6,50 6,28	0,40	8,175 8,025	0,44	0,54	0,24	3,5	26	35	20 35
M12	1,75	18,00 17,73	12,00 11,73	4,15 3,85	9,36 9,00	7,50 7,28	0,60	10,175 10,025	0,54	0,54		4,2	30	40	25 40
M16	2	24,00 23,67	16,00 15,73	5,65 5,35	11,93 11,50	10,00 9,78	0,60	14,212 14,032	0,54	0,66	0,34	5,0	38	50	30 40

^{****}Parafusos com comprimento "L" até "RT" devem ter valores de Ls mínimo conforme tabela

DIN 7984- CABEÇA BAIXA SEM GUIA DE CHAVE

Dimensões em milímetros L*** F1 RT** Α Ζ Diâm. Passo Normal Nom. Máx. Máx. Máx. Máx. Máx. Máx. Ref. Ref. Máx. Máx. Máx. d Mín. Mín. Mín. Mín. Mín. Mín. Mín. 8,50 5,00 2,82 3,50 3,10 10 M5 0.8 0.20 0.36 0.44 0.15 16 25 8 28 3 32 4 82 2 58 3.02 25 10,00 6,00 3,12 4,00 4,12 10 M6 0,25 0,36 0,44 0,15 18 9,78 3,82 4,02 5,82 2,88 40 13.00 8.00 3.95 5.00 5.14 12 M8 1.25 0,40 0,44 0,54 0,18 30 22 12.73 7.78 3.65 4.82 5.02 30 16,00 10,00 4,65 6,00 7,175 20 M10 1.5 0,40 0,44 0,54 0,24 26 35 15,73 7,025 9,78 4,35 5,82 60 18,00 12,00 5,15 7,00 8,175 25 0,54 0,54 0,27 M12 1.75 0,60 30 45 4,85 6,78 8,025 17,73 11,73

Acima de "RT" o comprimento de rosca será igual "T"

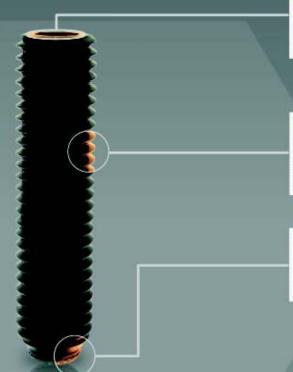
Notas:

Material: Aço liga de alta qualidade

Tratamento térmico:

DIN 6912 - Dureza 32 - 39 HRC (10.9) DIN 7984 - Dureza 22 - 32 HRC (8.8)

Classe de rosca: 6g


COMPRIMENTO (L)	TOLERÂNCIAS
Acima de 6mm até 10mm, incl.	<u>+</u> 0,29mm
Acima de10mm até 18mm,incl.	<u>+</u> 0,35mm
Acima de 18mm até 30mm,incl.	± 0,42mm
Acima de 30mm até 50mm,incl.	<u>+</u> 0,50mm
Acima de 50mm até 80mm,incl.	<u>+</u> 0,60mm

^{*}A referência "C" deve estar distante 1xd (diâmetro nominal do parafuso) a partir do assentamento da cabeca.

^{**}Parafusos com comprimento "L" até "RT" devem ter rosca total.

^{***}Faixa de comprimentos fabricados. Demais comprimento sob consulta.

TELLEP SEM CABEÇA

Encaixe sextavado com profundidade máxima

Confere área extra de torção permitindo altos torques de aperto sem danificar a chave e o parafuso.

Tratamento térmico

Tratamento térmico apropriado aliado à utilização da **aço de liga** nobre propiciam a obtenção de dureza uniforme e asseguram máxima resistência sem fragilização.

Ponta de acordo com a aplicação

Uma ponta adequada para cada aplicação. A **ponta recartilhada** proporciona maior força de retenção vibracional.

TELLEP SEM CABEÇA COM SEXTAVADO INTERNO

Num parafuso sem cabeça você compra três tipos de força de retenção: torcional (resistência à rotação); axial (resistência ao movimento lateral) e vibracional. TELLEP lhe proporciona o máximo das três, pois sua alta resistência permite um aperto mais forte, gerando maior pressão entre as peças fixas. Além disso, para evitar afrouxamento por vibração, você pode comprar TELLEP com ponta recartilhada. Os dentes da recartilha, dispostos no sentido anti-horário, penetram no eixo e resistem a qualquer tendência do parafuso a se soltar.

A seleção de tamanho é um fator importante para se obter o força de retenção necessária. Como norma empírica, o diâmetro de um parafuso deverá ser a metade daquele do eixo. Para dados mais específicos, veja as tabelas da página 28. Estas tabelas são baseadas em um único tipo de ponta (côncava).

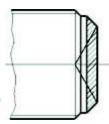
A força de retenção é quase proporcional ao torque de fixação, nos parafusos de pontas côncava e plana.

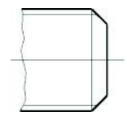
Por isso, dentro dos limites de resistência dos conjuntos, você pode aumentar a força de retenção, aumentando o torque de fixação. O tipo de ponta do parafuso, de acordo com sua penetração, pode acrescentar até 15% à força de retenção total. A ponta cônica, com uma penetração mais profunda, acarreta o maior acréscimo.

A resistência e uniformidade superiores dos parafusos TELLEP permitem a aplicação de torques mais elevados e alta força de retenção, reduzindo o número de parafusos necessários e os custos de montagem dos produtos.

A dureza relativa entre o parafuso sem cabeça e o eixo é outro fator importante na obtenção da força de retenção máxima.

Uma diferença menor que 10 HRC entre a dureza da ponta do parafuso e do eixo pode resultar em uma perda de até 15% na força de retenção.

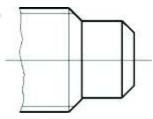




SELEÇÃO DE PONTAS DE ACORDO COM A APLICAÇÃO

A seleção de pontas é normalmente determinada pela natureza da aplicação, materiais envolvidos, suas durezas relativas, freqüência de montagem e outros fatores.

Mencionamos aqui os tipos de ponta standard, suas características gerais e as áreas mais freqüentes de aplicação de cada tipo. Para dimensões, propriedades mecânicas, torques de fixação, veja as páginas seguintes.



Ponta côncava recartilhada

Para colocação rápida e permanente de engrenagens, anéis, polias ou botões sobre eixos. O recartilhado exclusivo evita o afrouxamento, mesmo quando a rosca interna é mal feita. Resiste às mais severas vibrações. A ponta é escareada para um máximo poder de travamento.

Ponta plana

Usualmente empregada onde o aperto é freqüente, causando pequeno ou nenhum desgaste na parte contra a qual é assentada. Pode ser usada contra eixos temperados com uma parte plana retificada e como parafuso de ajuste.

Ponta cilíndrica (half-dog)

Para fixação permanente de uma peça em outra. A ponta é encaixada em um furo no eixo ou contra uma superfície plana fresada. Substitui freqüentemente pinos de guia.

Ponta cônica

Para fixação permanente de peças. A penetração profunda dá maior força de retenção axial e torcional. Em materiais com dureza acima de 208 HB (15 HRC) a ponta penetra até a metade do seu comprimento, desenvolvendo maior resistência ao cisalhamento pelo aumento da secção resistente. Usada para pivôs e ajustes finos.

SELEÇÃO DE TAMANHO

O fator principal, na determinação do tamanho de um parafuso sem cabeça, é a força de retenção requerida.

Outros fatores envolvidos são: tipos de ponta, dureza relativa, número de parafusos e tratamento superficial.

FORÇA DE RETENÇÃO

O parafuso sem cabeça tem, basicamente, duas funções: fixar duas peças, uma contra outra e evitar que elas se soltem. Para cumprí-las, ele precisa desenvolver uma potente força de travamento.

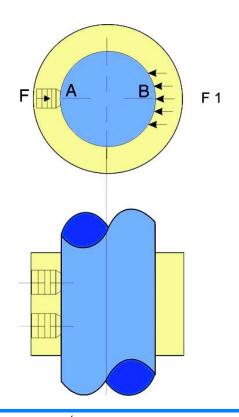
Ao contrário dos outros parafusos, o sem cabeça trabalha a compressão e, portanto, a força de travamento concentra-se no ponto em que ele está assentado, fixando, firmemente, as duas partes do conjunto e provendo uma primeira ação contrária ao afrouxamento.

Ao se apertar o parafuso sem cabeça em um conjunto eixo - anel (Figura 1), gera-se a força (F) exercida pela ponta sobre o eixo e também uma reação igual, F1, do anel sobre o eixo, no lado oposto. Essas forças criam duas áreas de atrito, (A) e (B) que são responsáveis por quase toda a resistência ao movimento relativo, axial ou torcional, das duas peças. Uma resistência adicional é provocada da penetração da ponta no eixo.

Há duas espécies de força de retenção: estática e dinâmica.

A força de retenção estática é responsável pela resistência ao movimento axial e torcional, entre as peças montadas.

É uma função de atrito e da resistência à penetração da ponta.


Portanto, a força de retenção estática é diretamente proporcional ao torque de fixação e é influenciada pela dureza relativa entre a ponta e o eixo. Ela pode ser interpretada como uma força única, agindo tangencialmente à superfície do aço, com magnitude igual à da força de retenção axial, medida em N.

O momento de retenção torcional é obtido multiplicando-se a força axial pelo do raio do eixo e é medido em N.m. As tabelas da página 28 mostram a força de retenção axial e o momento torcional de vários parafusos de ponta côncava, fixados pelos torques de fixação recomendados, em eixos de dureza de 208 HB a 327 HB (15 HRC a 35 HRC).

A força de retenção dinâmica é a responsável por uma segunda função do parafuso: a de evitar que as peças se soltem. Corresponde, portanto, à resistência à vibração do parafuso.

Ela também depende do torque de fixação e da penetração da ponta, mais é influenciada por mais dois fatores: tipos de ponta e processos auxiliares de travamento, como travantes químicos e mecânicos.

FIGURA 1

FORÇA DE RETENÇÃO AXIAL E TORCIONAL

Parafuso TELLEP sem cabeça com ponta recartilhada. Em polegadas (rosca UNRC ou UNRF com ou sem tratamento superficial - Montagem em eixo de aço)

Diâmetro		Força de retenção	ão												
Nominal	fixação	axial (N)	3/32"	1/8"	5/32"	3/16"	7/32"	1/4"	5/16"	3/8"	7/16"	1/2"	9/16"		
	(Nm)	axiai (ii)				Força	de retenç	ão torcior	al (Nm)						
#4	0,56	711,72	0,85	1,13	1,41	1,69	1,98	2,26	2,82	3,39	3,95	4,52			
#5	1,02	889,64		1,41	1,76	2,11	2,46	2,82	3,53	4,24	4,94	5,65	6,35		
#6	1,02	1112,06				2,60	3,05	3,50	4,41	5,31	6,21	7,01	7,91		
#8	2,26	1712,57				4,07	4,75	5,42	6,78	8,13	9,49	10,85	12,20		
#10	3,73	2402,04				5,76	6,67	7,68	9,49	11,41	13,33	15,25	17,17		
1/4"	9,83	4448,22						14,12	17,63	21,13	24,63	28,25	31,75		
5/16"	18,64	6672,33							26,44	31,64	36,95	42,37	47,57		
3/8"	32,77	8896,44								42,37	49,37	56,49	63,50		
7/16"	48,58	11120,56									61,58	70,62	79,32		
1/2"	70,05	13344,67										84,74	95,25		
5/8"	138,41	17792,89													

Diâmetro		Força de retenção				Diâmet	ro do eixo	(Dureza	15 HRC –	35 HRC)				
Nominal	- 3	axial (N)	5/8"	3/4"	7/8"	1"	1 1/4"	1 1/2"	1 3/4"	2"	2 1/2"	3"	3 1/2"	4"
	(Nm)					F	orça de re	etenção to	rcional (N	lm)				
#4	0,56	711,72												
#5	1,02	889,64	7,01											
#6	1,02	1112,06	8,81	10,62	12,32									
#8	2,26	1712,57	13,56	16,27	18,98	21,69								
#10	3,73	2402,04	19,09	22,82	26,66	30,51	38,19							
1/4"	9,83	4448,22	35,25	42,37	49,37	56,49	70,62	84,74						
5/16"	18,64	6672,33	52,88	63,50	74,12	84,74	105,87	127,11	148,01	169,48				
3/8"	32,77	8896,44	70,62	84,74	98,86	112,98	141,23	169,48	197,72	225,97				
7/16"	48,58	11120,56	88,13	105,87	123,72	141,23	176,26	211,85	249,70	282,46	353,08			
1/2"	70,05	13344,67	105,87	127,11	148,01	169,48	211,85	254,22	296,02	338,95	423,69	508,43		
5/8"	138,41	17792,89	141,23	169,48	197,72	225,97	282,46	338,95	395,45	451,94	564,92	677,91	790,89	903,88

Estas tabelas foram determinadas, experimentalmente, em uma longa série de testes, envolvendo parafusos sem cabeça de ponta côncava, com rosca de classe 3 A, e roscas internas de classe 2 B.

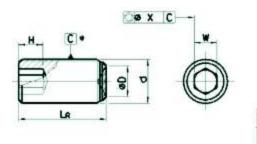
A força de retenção foi definida como a carga mínima necessária para produzir 0.010"

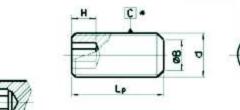
(0,25mm) de movimento relativo entre as partes.

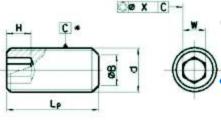
As forças de retenção tabeladas são resistências ao escoamento e devem ser usadas com fatores de segurança específicos, apropriados às dadas condições de aplicação e carga. Bons resultados têm sido alcançados com fatores de segurança, de 1,5 a 2,0, sob cargas estáticas e de 4,0 a 8,0 em situações dinâmicas.

Em milímetros (rosca normal com ou sem tratamento superficial - Montagem em eixo de aço)

Diâmetro	Momento de	Força de retenção		Diâmetro do eixo (Dureza 15 HRC – 35 HRC)								
Nominal	- 3	axial (N)	2	4	5	6	8	10	12	14	16	
	(Nm)	axiai (iv)	Força de retenção torcional (Nm)									
M3	1	40	0,06	0,08	0,10	0,12	0,16	0,20	0,24	0,28	0,32	
M4	2,2	70		0,14	0,18	0,21	0,28	0,35	0,42	0,49	0,56	
M5	5,8	250			0,62	0,75	1,00	1,20	1,50	1,70	2,00	
M6	9,8	400				1,20	1,60	2,00	2,40	2,80	3,20	
M8	21	850					3,40	4,25	5,10	5,95	6,80	
M10	40	1600						8,00	9,60	11,20	12,80	
M12	65	2550							15,30	17,80	20,40	
M14	71	2800								19,60	22,40	
M16	160	6200									49,60	

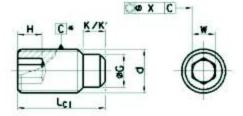

Diâmetro		Força de retenção	Diâmetro do eixo (Dureza 15 HRC – 35 HRC)										
Nominal	fixação	axial (N)		25	30	40	50	60	70	80	100		
	(Nm)		Força de retenção (Nm)										
M3	1	40	0,4										
M4	2,2	70	0,7	0,88									
M5	5,8	250	2,5	3,1	3,8								
M6	9,8	400	4,0	5,0	6,0	8,0							
M8	21	850	8,5	10,6	12,8	17,0	21,2						
M10	40	1600	16,0	20,0	24,0	32,0	40,0	48,0					
M12	65	2550	25,5	31,9	38,2	51,0	63,8	76,5	89,2				
M14	71	2800	28,0	35,0	42,0	56,0	70,0	84,0	98,0	112,0			
M16	160	6200	62,0	77,5	93,0	124,0	155,0	186,0	217,0	248,0	312,0		


Notas: Os valores em negrito indicam os diâmetros recomendados para os parafusos, tomando-se por base que o diâmetro deveria ser de aproximadamente a metade do diâmetro do eixo.


PARAFUSOS SEM CABEÇA COM SEXTAVADO INTERNO

Métrico - DIN 913 - 914 - 915 - 916/

ISO 4026 - 4027 - 4028 - 4029



Dimensões em milímetro

Diâm. Nom.	Passo Normal	Е	3	(0	P 1)	I	D		R 1)	I	=	((L _C 01)	(G	L ₀ (0	CI 1)	H ***
d		Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Mín.
М3	0,5	2,00	1,75	3	20	1,30	1,18	3	20	N.A	N.A	4	12	N.F	N.F	N.F	N.F	1,20
M4	0,7	2,50	2,25	4	25	2,10	1,88	4	25	N.A	N.A	5	20	2,50	2,25	6	12	1,50
M5	0,8	3,50	3,20	5	25	2,40	2,15	5	35	N.A	N.A	5	16	3,50	3,20	8	16	2,00
M6	1	4,00	3,70	6	30	3,30	3,05	6	40	1,50	0,90	6	30	4,00	3,70	8	25	2,00
M8	1,25	5,50	5,20	8	50	4,30	4,05	8	50	2,00	1,40	8	35	5,50	5,20	8	45	2,50
M10	1,5	7,00	6,64	10	50	5,25	5,00	10	55	2,50	1,90	10	50	7,00	6,65	12	50	3,00
M12	1,75	8,50	8,14	12	60	6,60	6,35	12	70	3,00	2,40	16	45	8,50	8,15	16	60	4,00
M14	2	N.F	N.F	N.F	N.F	8,10	7,85	16	70	N.F	N.F	N.F	N.F	N.F	N.F	N.F	N.F	5,40
M16	2	12,00	11,57	20	60	9,10	8,85	16	70	4,00	3,25	30	40	N.F	N.F	N.F	N.F	5,50
M20	2,5	15,00	14,57	20	80	N.F	N.F	N.F	N.F	N.F	N.F	N.F	N.F	N.F	N.F	N.F	N.F	6,30

Diâm. Nom.	Passo Normal	Lo **	K **		k *	<′ *	X	W	
d		Ref.	Máx.	Mín.	Máx.	Mín.	Máx.	Máx.	Mín.
M3	0,5	N.F	N.F	N.F	N.F	N.F	0,24	1,545	1,520
M4	0,7	6	1,25	1,00	2,25	2,00	0,24	2,056	2,020
M5	0,8	6	1,50	1,25	2,75	2,50	0,24	2,560	2,520
M6	1	8	1,75	1,50	3,25	3,00	0,24	3,08	3,020
M8	1,25	10	2,25	2,00	4,30	4,00	0,30	4,095	4,020
M10	1,5	12	2,75	2,50	5,30	5,00	0,30	5,095	5,020
M12	1,75	16	3,25	3,00	6,30	6,00	0,36	6,095	6,020
M14	2	N.F	N.F	N.F	N.F	N.F	0,36	6,092	6,020
M16	2	N.F	N.F	N.F	N.F	N.F	0,36	8,105	8,026
M20	2,5	N.F	N.F	N.F	N.F	N.F	0,42	10,115	10,032

COMPRIMENTO (L)	TOLERÂNCIAS
até 6mm,incl.	± 0,24mm
Acima de 6mm até 10mm,incl.	± 0,29mm
Acima de 10mm até 18mm,incl.	± 0,35mm
Acima de 18mm até 30mm, incl.	± 0,42mm
Acima de 30mm até 50mm,incl.	<u>+</u> 0,50mm
Acima de 50mm até 80mm,incl.	<u>+</u> 0,60mm

Notas:

Material: Aço liga de alta qualidade

Tratamento térmico: Dureza 45 - 53 HRC (classe 45H)

Classe de rosca: 5g6g

(01) Faixa de comprimentos fabricados. Demais comprimentos sob consulta.

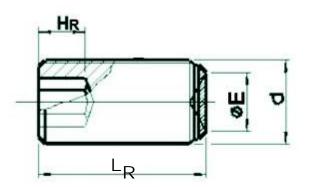
* A referencia "C" deve estar distante 1xd (diâmetro nominal) a partir de extremidade do sextavado.

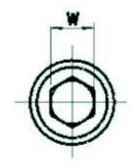
* * Para parafuso com ponta cilíndrica:

K - para comprimentos menores ou iguais a Lo

K' - para comprimentos maiores que Lo

Onde:


N.A. = não aplicável N.F. = não fabricado


*** A profundidade do sextavado é determinada pelo comprimento do parafuso. As profundidades relacionadas nesta coluna (dimensões "H") são para os parafusos de comprimento mínimo. Parafusos de comprimentos maiores possuem sextavados tão profundos quando possível.

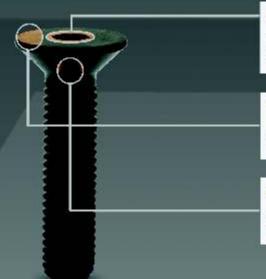
PARAFUSOS SEM CABEÇA COM SEXTAVADO INTERNO

Polegada - ASME B 18.3

CONSTRUÇÃO OPCIONAL DO SEXTAVADO

Diâma	Fine ner	i i	Ξ	LR ³	* * *	HR**	V	V	
Diâm.	Fios por	Máx.	Mín.	Mín.	Máx.	Mín.	Máx.	Mín.	
Nom. d	polegadas			Dimens	ões em m	ilímetros			
#4	40 UNRC	1,55	1,30	1/8"	5/8"	1,98	1,295	1,270	
#5	40 UNRC	1,70	1,45	1/8"	3/4"	2,03	1,613	1,588	
#6	32 UNRC	1,88	1,63	1/8"	1"	2,03	1,613	1,588	
#8	32 UNCR	2,21	1,93	1/8"	1"	1,98	2,009	1,984	
#10	24 UNRC	2,59	2,23	3/16"	1 1/2"	2,54	2,418	2,380	
#10	32 UNRF	2,59	2,23	3/16"	1 1/2"	2,54	2,418	2,380	
1/4"	20 UNRC	3,35	3,00	3/16"	2"	2,69	3,226	3,175	
1/4"	28 UNRF	3,35	3,00	3/16"	2"	2,69	3,226	3,175	
5/16"	18 UNRC	4,37	3,96	1/4"	2"	3,78	4,031	3,967	
5/16"	24 UNRF	4,37	3,96	1/4"	2"	3,78	4,031	3,967	
3/8"	16 UNRC	5,38	4,92	1/4"	3"	3,56	4,826	4,762	
3/8"	24 UNRF	5,38	4,92	1/4"	2"	3,56	4,826	4,762	
7/16"	14 UNRC	6,40	5,89	3/8"	2 1/2"	4,95	5,631	5,555	
1/2"	13 UNRC	7,39	6,85	3/8"	3"	5,21	6,426	6,350	
1/2"	12BSW	7,39	6,85	3/8"	3"	5,21	6,426	6,350	
1/2"	20 UNRF	7,39	6,85	1/2"	2"	5,21	6,426	6,350	
5/8"	11 UNRC	9,42	8,81	1/2"	3"	6,73	8,026	7,938	
3/4"*	10 UNRC	11,43	10,80	3/4"	3"	11,18	9,627	9,525	
7/8"*	9 UNRC	13,46	12,75	1″	3"	15,93	12,827	12,700	
1"*	8 UNRC	15,46	14,70	1″	4"	18,80	14,427	14,288	

- * Para estas bitolas, os parafusos não têm recartilha na ponta.
- ** A profundidade do sextavado é determinada pelo comprimento do parafuso. As profundidades relacionadas nessa coluna são para os parafusos de comprimento mínimo. Parafusos de comprimentos maiores possuem sextavados tão profundos quanto possível.
- * * * Faixa de comprimento fabricados. Demais comprimentos sob consulta.


Notas

Material: Aço liga de alta qualidade Tratamento térmico: 45 - 53 HRC

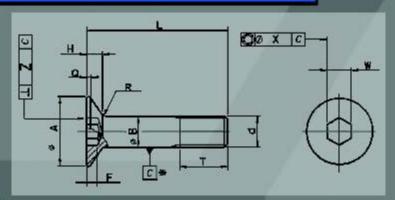
Classe de rosca: 3A

COMPRIMENTO (L)	TOLERÂNCIA
Até 5/8"incl.	± 0,01"
Acima de 5/8"até 2"	± 0,02"
Acima de 2"até 6"	⁺ 0,03"

TELLEP CABEÇA CHATA

Encaixe do sextavado profundo

Encaixe sextavado com profundidade controlada garante um ótimo engajamento da chave.


Cabeça escareada

A cabeça escareada permite a obtenção de superfícies externas lisas no conjunto montado.

Angulo uniforme

Angulo uniforme sob a cabeça assegura contato máximo com a contra-peça.

PARAFUSOS DE CABEÇA CHATA SEXTAVADO INTERNO Métrico ISO 10642 (DIN 7991)

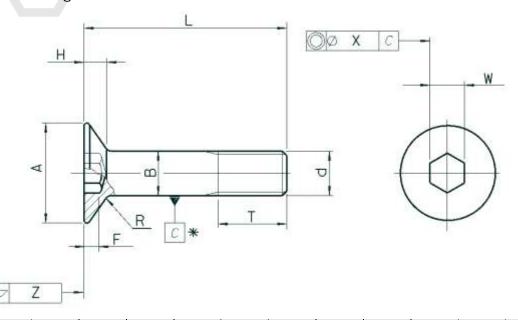
Dimensões em milímetros

Diâm.	-	Α	В	F	Q	Н	R	W	Х	Z	T#*	RT**	L***
Nom.	Passo Normal	Máx. Mín.	Máx. Mín	Máx. Mín.	~	Máx.	Mín.	Máx. Mín.	Máx.	Máx.	Ref.	Ref.	Máx. Mín.
М3	0,5	5,00 5,54	3,00 2,86	1,20 0,95	0,2	1,86	0,10	2,10 2,02	0,28	0,10	12	30	6 20
M4	0,7	8,00 7,53	4,00 3,82	1,80 1,53	0,2	2,48	0,20	2,60 2,52	0,36	0,10	14	40	8 30
M5	0,8	10,00 9,43	5,00 4,82	2,3C 2,03	0,3	3,10	0,20	3,10 3,02	0,36	0,15	16	30	8 30
M6	7	12,00 11,31	6,00 5,82	2,50 2,2s	0,3	3,72	0,30	4,12 4,02	0,36	0,15	18	35	10 50
M8	1,25	16,00 15,24	8,00 7,79	3,50 3,20	0,4	4,96	0,50	5,14 5,02	0,44	0,18	22	45	10 60
M10	1,5	20,00 19,22	10,00 9,78	4,40 4,10	0,5	6,20	0,50	6,14 6,02	0,11	0,21	26	50	16 70
M12	1,/5	24,00 23,12	12,00 11,73	4,60 4,30	0,5	1,44	1,00	8,175 8,025	0,54	0,27	30	55	20 70
M15	7	30,00 29,01	16,00 15,73	5,30 5,00	0,5	8,80	1,00	10,175	0,54	0,34	38	65	25 80
M20	2,5	36,00 35,38	20,00 19,67	5,90 5,60	0,5	10,16	1,00	12,212 12,032	0,66	0,42	46	70	30 100

- * A referência "C" deve estar distante 1xd (diâmetro nominal do parafuso) a partir do início do corpo.
 ** Parafusos com comprimento "L" até "RT" devem ter rosca total. Acima de "RT" o comprimento de rosca será igual a "T".
 *** Faixa de comprimentos fabricados. Demais comprimentos sob consulta.

Netes

Material: Aço liga de alta qualidade Tratamento térmico: Dureza 39 - 44 I IRC (12.9) Tensão de tração: 976 N/mm² mín. Classe de rosca: 6g



COMPRIMENTO (L)	TOLERANCIAS
Até 6mm,incl.	± 0,24mm
Acima de 6mm até 10mm,incl	± 0,29mm
Acima de 10mm até 18mm,incl	± 0,35mm
Acima de 18mm até 30mm, Incl.	± 0,42mm
Acima de 30mm até 50mm,incl	± 0,50mm
Acima de 50mm até 80mm,incl	± 0,60mm
Acima de 80mm até 120mm.incl	± 0,70mm

PARAFUSOS DE CABEÇA CHATA COM SEXTAVADO INTERNO

Polegada - ASME B 18.3

		А	В	E	Н	R	W	Χ	Z	T**	RT**	L***
Diâm. Nom. d	Fios por polegadas	Máx. Mín.	Máx. Mín.	Mín.	Ref.	Mín.	Máx. Mín.	Máx.	Máx.	Mín.	Ref.	Mín. Máx.
					Dimens	ões em m	ilímetros					Wax.
#4	40 UNRC	6,47 5,54	2,84 2,73	1,40	2,11	0,10	1,613 1,587	0,13	0,28	19,05	1″	1/4″ 1/2"
#5	40 UNRC	7,14 6,10	3,17 3,05	1,55	2,28	0,10	2,009 1,984	0,13	0,30	19,05	1″	1/4" 3/4"
#6	32 UNRC	7,79 6,68	3,50 3,37	1,68	2,46	0,15	2,009 1,984	0,13	0,33	19,05	1 1/4"	1/4′ 3/4"
#8	32 UNRC	9,12 7,90	4,16 4,02	1,93	2,84	0,20	2,418 2,380	0,15	0,35	22,22	1″	3/8″ 1
#10	24 UNRC	10,44 9,12	4,82 4,67	2,21	3,22	0,20	3,226 3,175	0,18	0,38	22,22	1 1/4"	3/8″ 1 1/4"
#10	32 UNRF	10,44 9,12	4,82 4,67	2,21	3,22	0,20	3,226 3,175	0,18	0,38	22,22	1 1/4"	3/8" 1 1/4"
1/4"	20 UNRC	13,48 12,19	6,35 6,18	2,82	4,09	0,30	4,031 3,967	0,23	0,40	25,40	1 1/2"	3/8″ 2"
1/4"	28 UNRF	13,48 12,19	6,35 6,18	2,82	4,09	0,30	4,031 3,967	0,23	0,40	25,40	1 1/2"	1/2" 1 1/2"
5/16"	18 UNRC	16,66 15,24	7,93 7,75	3,43	5,03	0,50	4,826 4,762	0,28	0,43	28,57	1 3/4"	1/2" 2 1/2"
5/16"	24 UNRF	16,66 15,24	7,93 7,75	3,43	5,03	0,50	4,826 4,762	0,28	0,43	28,57	1 3/4"	3/4" 1 1/2"
3/8"	16 UNRC	19,84 18,29	9,52 9,34	4,04	5,94	0,50	5,631 5,555	0,33	0,46	31,75	2"	1/2″ 3"
3/8"	24 UNRF	19,84 18,29	9,52 9,34	4,04	5,94	0,50	5,631 5,555	0,33	0,46	31,75	2"	3/4" 1 1/2"
7/16"	14 UNRC	21,43 19,84	11,11 10,91	4,04	5,94	0,50	6,426 6,350	0,38	0,46	34,92	2 1/4"	3/4" 2"
1/2"	13 UNRC	23,82 22,15	12,70 12,49	4,37	6,37	1,00	8,026 7,937	0,38	0,46	38,10	2 1/4"	3/4" 3"
1/2"	20 UNRF	23,82 22,15	12,70 12,49	4,37	6,37	1,00	8,026 7,937	0,38	0,46	38,10	2 1/4"	1" 2"
5/8"	11 UNRC	30,17 28,24	15,87 15,65	5,59	8,23	1,00	9,626 9,525	0,96	0,56	44,45	3″	1 1/4" 3"
3/4"	10 UNRC	36,52 34,42	19,05 18,81	5,59	10,06	1,00	12,827 12,700	1,14	0,61	50,80	3″	1 1/4″ 3"

^{*} A referência "C" deve estar distante 1xd (diâmetro nominal do parafuso) a partir do início do corpo.

Notas:

Material: Aço liga de alta qualidade

Tratamento térmico: Dureza 39 - 44HRC para bitola $\leq 1/2''$ Dureza 37 - 44HRC para bitola > 1/2''

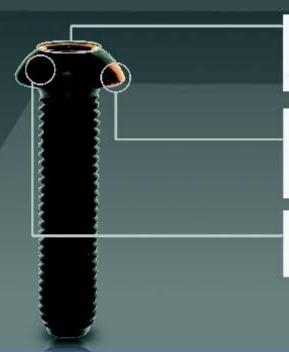
Tensão de tração: $1000N/mm^2$ mín para bitola $\leq 1/2''$ 931N/mm 2 mín para bitola > 1/2"

Classe de rosca: 3A

	COME	PRIMENTO ((L)				
Diâmetro d	Até 1"incl.	Acima de 1" até 2 1/2" incl.	Acima de 2 ½" até 6" incl.				
	Tolerâncias						
#4 até 3/8" incl.	-0,03"	- 0,04"	- 0,06"				
7/16″até 3/4 incl.	-0,03"	- 0,06"	- 0,08"				

^{* *} Parafusos com comprimento "L" até "RT" devem ter rosca total. Acima de "RT" o comprimento de rosca será igual a "T".

^{***} Faixa de comprimentos fabricados. Demais comprimentos sob consulta.


TORQUE RECOMENDADO / FORÇA TENSORA MÍNIMA PARAFUSOS DE CABEÇA CHATA COM SEXTAVADO INTERNO

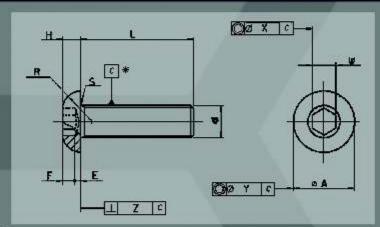
DIN 7991 / ISO 10642											
BITOLA	PASSO	GG25/S FERRO F GG25 A	FUNDIDO SUPERIOR FUNDIDO ÇO 1045 1030	ALUMÍNIO COMERCIAL							
		TORQUE	FORÇA	TORQUE	FORÇA						
		(Nm)	(KN)	(Nm)	(KN)						
M3	0,5	1	2,24	1,1	1,60						
M4	0,7	3	3,90	3	2,89						
M5	0,8	7	6,33	5	4,77						
M6	1	12	8,96	9	6,90						
M8	1,25	29	16,34	22	12,27						
M10	1,5	57	25,94	43	19,60						
M12	1,75	100	37,72	74	27,93						
M16	2	240	70,59	144	42,28						
M20	2,5	462	110,39	242	57,72						

ASME B 18.3								
BITOLA	FIOS POR POLEGADA	FUNDID SUPERIC FUNDID AÇO	RRO O GG25/ DR FERRO OO GG25 1045 1030	ALUMÍNIO COMERCIAL				
		TORQUE	FORÇA	TORQUE	FORÇA			
		(Nm)	(KN)	(Nm)	(KN)			
#4	40 UNRC	1	1,72	1	1,60			
#5	40 UNRC	2	2,29	1	1,88			
#6	32 UNRC	2	2,59	2	2,30			
#8	32 UNRC	4	4,07	3	3,18			
#10	24 UNRC	5	5,04	5	4,38			
#10	32 UNRF	6	5,84	5	4,29			
1/4"	20 UNRC	13	9,19	11	7,93			
1/4″	28 UNRF	15	10,65	11	7,74			
5/16"	18 UNRC	27	15,24	22	12,54			
5/16"	24 UNRF	29	17,03	21	12,31			
3/8″	16 UNRC	47	22,59	38	18,08			
3/8"	24 UNRF	52	25,81	36	17,65			
7/16"	14 UNRC	73	32,08	47	19,99			
1/2"	13 UNRC	111	41,58	65	24,32			
1/2″	20 UNRF	122	47,13	61	23,73			
5/8"	11 UNRC	221	66,29	134	40,37			
3/4"	10 UNRC	392	98,24	243	60,72			

TELLEP CABEÇA ABAULADA

Encaixe do sextavado controlado

Encaixe sextavado controlado proporciona um perfeito contato com a chave e a reutilização do flxador por Inúmeras vezes.


Maior diâmetro da cabeça

Maior diâmetro da cabeça confere uma melhor distribuição de forças na aplicação e possibilita utilização em chapas e peças de diversos materials e espessuras.

Cabeça baixa e arredondada

A cabeça baixa e arredondada evita ferimentos e apresenta ótimo acabamento.

PARAFUSOS DE CABEÇA ABAULADA COM SEXTAVADO INTERNO

Dimensões em milímetros

D18	B	Α	E	F	H	L**	R	S	₩	X	Y	Z
DESCRIPTION AND SECTION	Passo Normal	Máx. Mín.	Mín.	Mín.	Máx. Mín.	Mín. Máx.	Ref.	Máx. Mín.	Máx. Mín.	Máx.	Máx.	Máx.
МЗ	0,5	5,70 5,40	0,20	1,04	1.65 1.40	6 12	3,1	0,35 0,25	2,045 2,020	0,28	0,36	0,10
M4	0,7	7,60 7,24	0,30	1,30	2.20 1.95	6 20	4,2	0,35 0,25	2,56 2,52	0,36	0,44	0,10
M5	0,8	9,50 9,14	0,38	1,56	2.75 2.50	8 25	5,3	0,45 0,35	3,08 3,02	0,36	0,44	0,15
M6	1	10,50 10,07	0,74	7,08	3.30 3.00	10 30	5,5	0,45 0,35	4,095 4,020	0,36	0,54	0,15
8M	1,25	14,00 13,57	1,05	2,60	4.40 4.10	10 35	7,4	0,50 0,40	5,095 5,070	0,44	0,54	0,18
M10	1,5	17,50 17,07	1,45	3,12	5,50 5,20	16 50	9,3	0,60 0,50	6,095 6,020	0,44	0,54	0,24
M12	1,75	21,00 20,48	1,63	4,16	6,60 6,21	20 50	11,0	0,70 0,60	8,145 8,025	0,54	0,66	0,27

A referência "C" deve estar distante 1xd (diâmetro nominal do parafuso) a partir do assentamento da cabeça.

** Faixa de comprimentos fabricados. Demais comprimentos sob consulta.

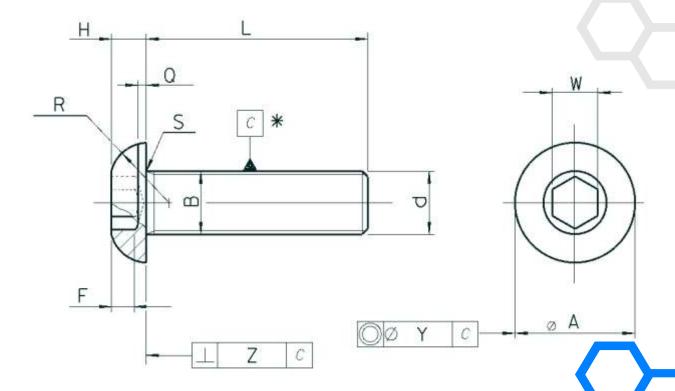
Notas

Material: Aço liga de alta qualidade

Tratamento térmico: Dureza 39 - 44 HRC (12.9)

Tensão de tração: 976 N/mm² mín.

Classe de rosca: 6g



COMPRIMENTO (L)	TOLERÂNCIAS
Até 6mm,Incl.	± 0,24mm
Adma de 6mm até 10mm,incl	± 0,29mm
Acima de 10mm até 18mm, incl	± 0,35mm
Acima de 18mm até 30mm, incl	± 0,42mm
Acima de 30mm até 50mm, incl	± 0,50mm
Acima de 50mm até 80mm incl	+ 0 50mm

PARAFUSOS DE CABEÇA ABAULADA COM SEXTAVADO INTERNO

Polegada - ASME B 18.3

D:::	Fios por	,	A	F	H	Н	Q	R	S	V	V	Υ	Z	L'	**
Diâm. Nom.d	polegada	Máx.	Mín.	Mín.	Máx.	Mín.	Máx.	Ref.	Mín.	Máx.	Mín.	Máx.	Máx.	. Mín.	Máx.
						Din	nensões e	em milíme	etros						
#4	40 UNRC	5,41	5,11	0,90	1,50	1,30	0,38	3,43	0,18	1,61	1,59	0,20	0,15	1/4"	1/2"
#6	32 UNRC	6,65	6,35	1,12	1,85	1,60	0,38	4,00	0,20	2,01	1,98	0,20	0,18	1/4″	5/8″
#8	32 UNRC	7,92	7,57	1,32	2.21	1,96	0,38	4,70	0,20	2,42	2,38	0,23	0,22	1/4"	3/4"
#10	24 UNRC	9,17	8,81	1,80	2,57	2,31	0,51	5,40	0,20	3,23	3,18	0,27	0,25	1/4"	1"
#10	32 UNRF	9,17	8,81	1,80	2,57	2,31	0,51	5,40	0,20	3,23	3,18	0,27	0,25	1/4"	1"
1/4"	20 UNRC	11,10	10,64	2,21	3,35	3,10	0,78	6,30	0,25	4,03	3,97	0,33	0,31	3/8"	1"
1/4"	28 UNRF	11,10	10,64	2,21	3,35	3,10	0,78	6,30	0,25	4,03	3,97	0,33	0,31	3/8″	1"
5/16"	18 UNRC	13,89	13,39	2,70	4,22	3,86	0,78	7,80	0,25	4,83	4,76	0,41	0,39	3/8″	1"
5/16"	24 UNRF	13,89	13,39	2,70	4,22	3,86	0,78	7,80	0,25	4,83	4,76	0,41	0,39	1/2″	1″
3/8"	16 UNRC	16,66	16,15	3,10	5,05	4,70	0,78	9,30	0,38	5,63	5,55	0,50	0,46	1/2″	1 1/4"
3/8"	24 UNRF	16,66	16,15	3,10	5,05	4,70	0,78	9,30	0,38	5,63	5,55	0,50	0,46	1/2″	1 1/4"
1/2"	13 UNRC	22,23	21,62	4,50	6,73	6,22	1,17	12,20	0,51	8,03	7,94	0,66	0,62	3/4"	2"

^{*} A referência "C" deve estar distante 1xd (diâmetro nominal do parafuso) a partir do assentamento da cabeça.

Notas:

Material: Aço liga de alta qualidade

Tratamento térmico: Dureza 39 - 44 HRC (12.9) Tensão de tração: 1000 N/mm² mín. ou 145000 psi

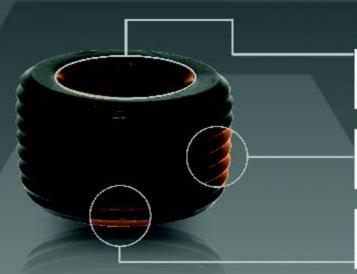
Classe de rosca: 3A

		Comprimento (L)	
Diâmetro d	Até 1″incl.	Acima de 1" até 2 1/2" incl.	Acima de 2 1/2" até 3" incl.
		Tolerâncias	
# 4 até 3/8" incl.	- 0,03"	- 0,04"	- 0,06"
1/2″	- 0,03"	- 0,06"	- 0,08"

^{**} Faixa de comprimentos fabricados (todos com rosca total). Demais comprimentos sob consulta.

TORQUE RECOMENDADO / FORÇA TENSORA MÍNIMA PARAFUSOS DE CABEÇA ABAULADA COM SEXTAVADO INTERNO

ISO 7380								
BITOLA	PASSO	FERRO FU GG25/SU FERRO FU GG25 AÇ AÇO 1	PERIOR JNDIDO O 1045	ALUMÍNIO COMERCIAL (1)				
		TORQUE	FORÇA	TORQUE	FORÇA			
		(Nm)	(KN)	(Nm)	(KN)			
M3	0,5	1	2,24	0,9	1,35			
M4	0,7	3	3,90	2	2,44			
M5	0,8	7	6,34	4	4,07			
M6	1	11	8,99	6	4,44			
M8	1,25	28	16,40	13	7,87			
M10	1,5	54	26,02	27	12,96			
M12	1,75	95	37,85	45	18,01			


ASME B 18.3								
BITOLA	FIOS POR POLEGADA	FERRO FI GG25/ SU FERRO FI GG25 AÇ AÇO 2	JPERIOR UNDIDO CO 1045	ALUMÍNIO COMERCIAL (1)				
		TORQUE	FORÇA	TORQUE	FORÇA			
		(Nm)	(KN)	(Nm)	(KN)			
#4	40 UNRC	1	1,72	1	1,24			
#5	40 UNRC	2	2,29	1	1,55			
#6	32 UNRC	2	2,59	2	1,97			
#8	32 UNRC	4	4,07	3	2,79			
#10	24 UNRC	5	5,04	4	3,95			
#10	32 UNRF	6	5,84	4	3,87			
1/4"	20 UNRC	13	9,22	7	5,21			
1/4"	28 UNRF	15	10,68	7	5,08			
5/16"	18 UNRC	27	15,29	14	8,51			
5/16"	24 UNRF	29	17,07	14	8,35			
3/8"	16 UNRC	47	22,66	25	12,49			
3/8"	24 UNRF	52	25,87	24	12,18			
1/2"	13 UNRC	111	41,60	59	22,56			
1/2"	20 UNRF	122	47,13	56	22,01			

^{(1) -} O torque, neste caso, é limitado em função da baixa resistência à compressão do material da contra-peça.

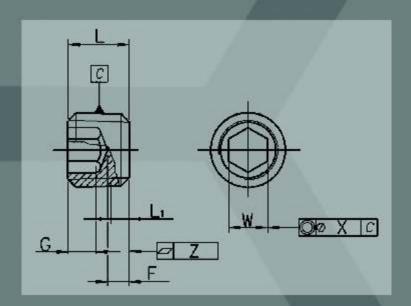
Aconselha-se a utilização de uma arruela plana de aço temperado para distribuir a pressão superficial.

 $^{^*}$ Arruela plana em aço temperado com dureza entre 40 e 43 HRC e diâmetro externo mínimo = 1,4 x Diâmetro da cabeça do parafuso.

BUJÕES DE PRESSÃO TELLEP

Encaixe do sextavado profundo

Encaixe sextavado profundo, resiste a maiores torques de fixação.


Controle Rigoroso da Circularidade

A circularidade rigorosamente controlada garante uma perfeita vedação.

Conicidade controlada

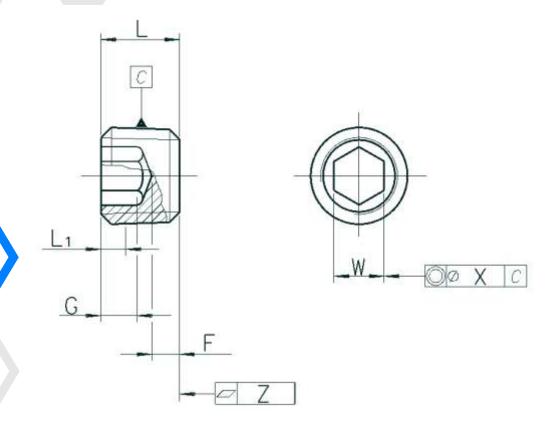
Conicidade controlada 3/4" por pé para bujão Dryseal e 7/8" para bujão Coplanar.

BUJÕES DE PRESSÃO COM SEXTAVADO INTERNO Rosca tipo Dryseal Conicidade 3/4" x 1

1200		F	G		L	1	v	E	1*	L ₁ **	х	Z
Diám. Nom.d	Diam. Fios por Nom.d polegada		Min.	Máx.	Min.	Máx.	láx. Min. Máx. Min.		Mln.	Ref.	Máx.	Máx
			0 3		70 22	Dimens	ies em mi	límetros	//			
1/16	27	1,58	3,56	8,23	7,62	4,09	3,96	7,186	7,098	4,06	0,20	80,0
1/8	27	1,58	3,56	8,23	7,62	4,90	4,7B	9,533	9,445	4,10	0,20	80,0
1/4	18	1,86	5,54	11,61	10,59	6,48	6,35	12,554	12,421	5,79	0,20	80,0
3/8	18	2,13	6,35	13,21	12,19	8,07	7,95	15,992	15,860	6,10	0,25	0,13
1/2	14	2,41	7,93	14,78	13,77	9,65	9,52	19,857	19,687	8,13	0,38	0,13
3/4	14	3,18	7,93	16,38	15,37	14,43	14,30	25,202	25,032	8,61	0,38	0,18
1	11 1/2	3,18	9,53	19,56	18,54	16,00	15,87	31,565	31,358	10,16	0,38	0,18

Notes

Material: Aço liga de alta qualidade Tratamento térmico: Dureza 35 - 40 HRC Tipo de rosca: Cônica NPTF


* E, Diâmetro primitivo à distância L, de menor secção

** L. Comprimento de engajamento manual.

BUJÕES DE PRESSÃO COPLANAR COM SEXTAVADO INTERNO

Rosca tipo Dryseal - Conicidade 7/8" x 1'

	Fios	F	G	ı	L	V	V	E-	1*	L ₁ **	Х	Z
Diâm.	por polegada	Mín.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Ref.	Máx.	Máx
d	- 3	,		,		Dimensô	ões em r	nilímetro)S			
1/16	27	1,31	3,11	6,35	5,97	4,09	3,96	7,090	7,056	1,41	0,20	0,08
1/8	27	1,25	3,11	6,35	5,97	4,90	4,77	9,437	9,403	1,41	0,20	0,08
1/4	18	1,14	5,10	10,31	9,93	6,48	6,35	12,410	12,358	2,12	0,20	0,08
3/8	18	1,02	5,10	10,31	9,93	8,05	7,92	15,849	15,797	2,12	0,25	0,13
1/2	14	1,70	6,68	13,49	13,11	9,65	9,52	19,673	19,607	2,72	0,38	0,13
3/4	14	1,37	6,68	13,49	13,11	14,40	14,27	25,018	24,952	2,72	0,38	0,18
1	11 1/2	2,85	8,23	16,66	16,28	16,00	15,87	31,340	31,260	3,31	0,38	0,18

 $^{^{\}star}$ E_{1} - Diâmetro primitivo à distância L_{1} da menor secção

Notas:

Material: Aço liga de alta qualidade Tratamento térmico: Dureza 35 - 40 HRC

Tipo de rosca: Cônica PTF

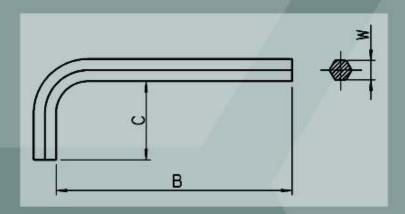
Dados de Aplicação

Bujão com Rosca tipo Dryseal – conicidade 3/4" x 1" e 7/8"x 1"

00111	0.0000	. , ,,	0 / .
Diâm. Nom.d	Fios por polegada	Torque recomendado Nm	Broca para furo da rosca
1/16	27	16,95	15/64
1/8	27	28,24	21/64
1/4	18	67,78	27/64
3/8	18	135,57	9/16
1/2	14	203,36	11,16
3/4	14	338,94	57/64
1	11 1/2	474,51	1 1/8

^{**} L₁ - Comprimento de engajamento manual.

CHAVES HEXAGONAIS TELLEP


Aço liga Cromo - Vanádio e tratamento térmico apropriado conferem a chave:

Alta resistência com elevada tenacidade; Ausência de descarbonetação; Dureza uniforme; Maior vida útil.

Tolerâncias e dimensões mais apertadas

que as específicadas em normas internacionais asseguram ajuste perfeito, contato total entre as paredes e transmissão de torques majores.

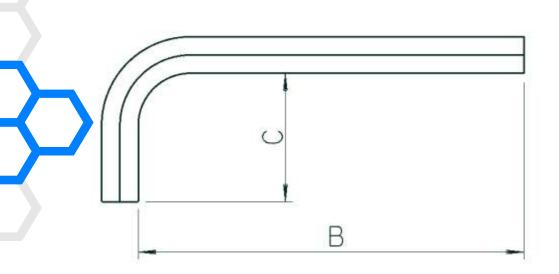
CHAVES PARA SEXTAVADO INTERNO METRICO - ISO 2936 (DIN 911)

Dimensões em milímetros

Tamani	ho da Cha	ave W	E	3	С			
Nominal	Máximo	Mínimo	Máximo	Mínimo	Máximo	Mínimo		
1.5	1,5	1,475	45	43	14	13		
2	2	1,960	50	48	16	15		
2.5	2,5	2,460	56	53	18	17		
3	3	2,960	63	60	20	18		
4	4	3,952	70	66	25	23		
5	5	4,952	80	76	28	26		
6	6	5,952	90	86	32	30		
8	8	7,942	100	95	36	34		
10	10	9,942	112	106	40	38		
12	12	11,890	125	119	45	43		
14	14	13,890	140	133	56	53		
17	17	16,890	160	152	63	60		
19	19	18,870	180	171	70	67		

Material: Aço liga de alta qualidade

Tratamento térmico: 1,5 até 6 - 52 HRC mín 8 - 50 HRC mín


10 até 14 - 48 HRC mín

17 até 19 - 45 HRC mín

CHAVES PARA SEXTAVADO INTERNO Polegada - ASME B 18.3

Dimensões em milímetros.

Tamar	nho da Chav	e W	[3	С			
Nominal	Máximo	Mínimo	Máximo	Mínimo	Máximo	Mínimo		
1/16"	1,587	1,562	46,75	42,05	16,65	11,95		
5/64"	1,984	1,958	49,95	45,25	17,85	13,15		
3/32"	2,380	2,354	53,15	48,45	19,05	14,35		
7/64"	2,779	2,741	56,35	51,65	20,20	15,50		
1/8"	3,175	3,137	59,45	54,75	21,35	16,65		
9/64"	3,571	3,533	62,65	57,95	22,55	17,85		
5/32"	3,967	3,929	65,85	61,15	23,75	19,05		
3/16"	4,762	4,724	72,25	67,55	26,15	21,45		
7/32"	5,554	5,517	78,55	73,85	28,55	23,85		
1/4"	6,350	6,312	84,85	80,15	30,95	26,25		
5/16"	7,937	7,899	97,55	92,85	33,45	28,75		
3/8"	9,525	9,487	110,25	105,55	37,25	32,55		
7/16"	11,112	11,062	123,15	118,45	40,45	35,75		
1/2″	12,700	12,636	135,65	130,95	43,65	38,95		
9/16"	14,287	14,224	148,35	143,65	46,75	42,05		
5/8"	15,875	15,812	161,05	156,35	49,95	45,25		
3/4"	19,050	18,974	186,45	181,75	56,35	51,65		

Notas:

Material: Aço liga de alta qualidade Tratamento térmico: 1/16 até 3/8 - 48 HRC mín. 7/16 até 3/4 - 45 HRC mín.

TABELA DE APLICAÇÃO DA CHAVE

Medida do sextavado da chave W	Cabeça Cilíndrica ASME B 18.3	Sem Cabeça ASME B 18.3	Cabeça chata ASME B 18.3	Cabeça Abaulada ASME B 18.3	Bujão de Pressão
1/16"	#1	#5 - #6	#4	#4	-
5/64"	#2 - #3	#8	#5 - #6	#5 - #6	-
3/32"	#4 - #5	#10	#8	#8	-
7/64"	#6	-	-	-	-
1/8″	-	1/4″	#10	#10	-
9/64"	#8	-	-	-	-
5/32"	#10	5/16″	1/4	1/4	1/16
3/16′	1/4″	3/8"	5/16	5/16	1/8
7/32"	-	7/16″	3/8	3/8	-
1/4"	5/16″	1/2"-9/16"	7/16	-	1/4
5/16"	3/8"	5/8″	1/2 - 9/16	1/2	3/8
3/8"	7/16"-1/2"	3/4"	5/8	5/8	1/2
7/16"	9/16"	-	-	-	-
1/2"	5/8″	7/8″	3/4	-	-
9/16″	-	1"- 1 1/8"	7/8	-	3/4
5/8"	3/4"	1 1/4"- 1 3/8"	1	-	1
3/4"	7/8"- 1"	1 1/2"	-	-	1 1/4

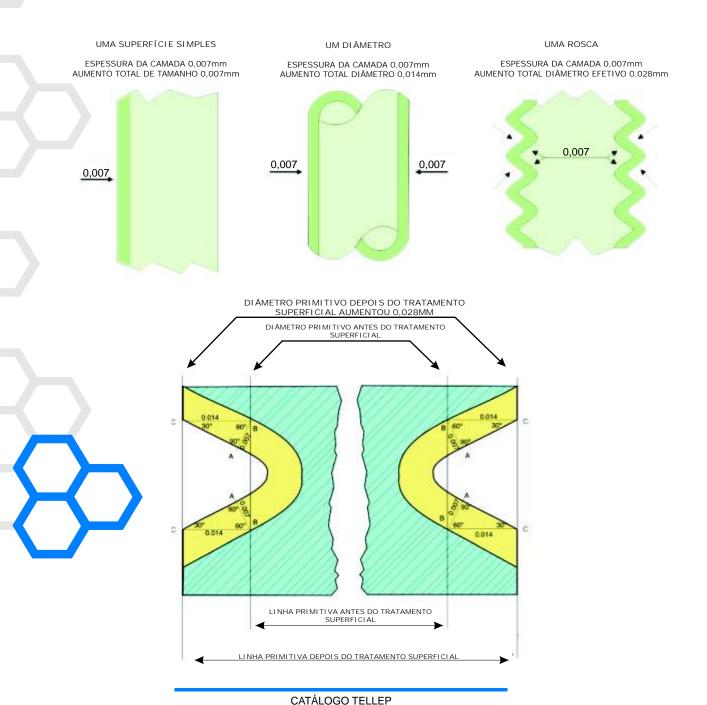
Medida do sextavado da chave W	Cabeça cilíndrica DIN 912 ISO 4762	Sem Cabeça DIN 913-914 915-916	Cabeça Cilíndrica c/ guia de chave DIN 6912	Cabeça chata	Cabeça abaulada ISO 7380	Bujão de pressão
1,5	-	M3	-	-	-	- "
2	-	M4	-	M3	M3	-
2,5	М3	M5	-	M4	M4	-
3	M4	M6	M4	M5	M5	-
4	M5	M8	M5	M6	M6	M8
5	M6	M10	M6	M8	M8	M10
6	M8	M12-M14	M8	M10	M10	M12
7	-	-	-	-	-	M14
8	M10	M16	M10	M12	M12	M16-M18
10	M12	M18-M20	M12	M14-M16	-	M20-M22
12	M14	M22-M24	M14	M18-M20	-	M24-M26
14	M16-M18	-	M16-M18	M22-M24	-	-
17	M20-M22	-	M20-M22	-	-	M30
19	M24-M27	-	M24-M27	-	-	-

TRATAMENTO SUPERFICIAL

Variação Dimensional

No tratamento superficial de parafusos, principalmente, a precisão é um dever. Vejamos por quê:

Sabemos que a galvanização adiciona material à superfície. Se você coloca uma camada de 0,007mm de espessura em uma camada simples, você adiciona 0,007mm.


Suponha que nós cobrimos um cilíndro com a mesma camada de 0,007mm. O diâmetro da cilíndro é aumentado de 0,007mm de ambos os lados, dando um total de 0,014mm.

Vamos supor agora, que cobrimos um parafuso com os mesmos 0,007mm de

espessura. O diâmetro efetivo será aumentado 4 vezes a espessura, ou seja, 0,028mm.

Aqui você está adicionando mais do que a maioria das pessoas pensam. A razão é mostrada a seguir:

No triângulo ABC, a espessura de camada (0,007mm) é mostrada pela linha AB. O triângulo tem ângulos de 30°, 60° e 90°, portanto, a hipotenusa é 2 vezes o valor da base (AB), ou seja, a linha CB é igual 0,014mm. Desde que esse aumento ocorra nos dois lados do diâmetro efetivo, o acréscimo total no diâmetro é de 0,028mm, ou seja, 4 vezes a espessura da camada.

43

FRAGILIZAÇÃO POR HIDROGÊNIO

A fragilização por hidrogênio é associada a fixadores com dureza superior a 30 HRC e produzidos com aço carbono ou aço liga. Seu efeito pode causar diminuição da ductilidade, trincas ou rupturas nos fixadores, ainda que aplicados sob tensões bem abaixo de suas resistências ao escoamento.

A absorção do hidrogênio livre do banho eletrolítico, ou de qualquer outra fonte, pode provocar a fragilidade do material. A decapagem ácida e a eletrodeposição de zinco estão entre os tratamentos superficiais mais comuns que causam a hidrogenização.

Isto ocorre porque o hidrogênio atômico se difunde nos contornos dos grãos e migra para os pontos de maiores concentrações de tensões quando o fixador é apertado, aumentando a pressão até que a resistência do metal base seja excedida, e em pouco tempo ocorrem rupturas na superfície. O hidrogênio se move e penetra rapidamente nas novas rupturas. Este ciclo de pressão-ruptura-penetração continua até o fixador romper-se, o que geralmente ocorre horas após a primeira tensão aplicada.

Para neutralizar a fragilização por hidrogênio, os fixadores devem passar por um processo de desidrogenização. Não é possível prever exatamente o tempo e a temperatura deste processo, que pode variar de 3 a 24 horas a temperaturas próximas a 200° C, considerando o tipo e o tamanho do fixador, suas dimensões, propriedades mecânicas, processos de limpeza, espessura da camada depositada e processo utilizado no tratamento superficial por eletrodeposição.

De modo geral, recomenda-se que parafusos com durezas de até 40 HRC tenham permanência mínima de 8 horas a temperaturas próximas de 200° C, e que este processo seja efetuado em, no máximo, 1 hora após o tratamento superficial.

A fragilidade por hidrogênio ocorre especialmente em níveis de resistência mais elevados, onde situam-se os parafusos TELLEP e demais parafusos de alta resistência mecânica. Por este motivo, a Metalac não recomenda, sob nenhuma hipótese, a zincagem em parafusos TELLEP com dureza acima de 40 HRC.

Uma das alternativas para evitar a fragilização por hidrogênio em parafusos de alta resistência é utilizar um processo de tratamento superficial que não tenha oferta de hidrogênio, como por exemplo, um organometálico.

FRAGILIZAÇÃO POR CORROSÃO SOB TENSÃO

A fragilização por corrosão sob tensão é um fenômeno que ocorre em fixadores de alta resistência com elevadas forças tensores geradas durante aperto e que estão montados em locais susceptíveis a uma atmosfera indutora a corrosão, tais como: locais quentes e úmidos, com pouca ventilação, ambiente marinho, etc.

Apesar do mecanismo da corrosão sob tensão não ser totalmente esclarecido, em termos práticos, o que ocorre é que trincas microscópicas são desenvolvidas em regiões de alta concentração de tensões, normalmente agravadas pelo efeito deletério do hidrogênio, o qual é quimicamente gerado pela ação da corrosão

A inevitável propagação destas trincas microscópicas, que pode ser acelerada se o fixador estiver trabalhando sob severas cargas dinâmicas, levaria a ruptura total, após

períodos incertos de trabalho, podendo chegar a meses ou até anos, sem qualquer aviso antecipado da futura falha. Desta forma, recomendamos máxima cautela no uso dos parafusos classe de resistência 12.9 (métricos) e 180.000 PSI (polegadas), em ambientes potencialmente indutores de corrosão.

Apesar dos parafusos TELLEP terem a melhor performance do mercado em relação à corrosão sob tensão, por serem 12.9 são também sujeitos a este efeito. Desta forma quando os parafusos TELLEP forem utilizados em ambientes corrosivos, orientamos nossos clientes a utilizarem um tratamento superficial do tipo organo-metálico, que proteja quanto a corrosão e não introduza hidrogênio nos parafusos, possibilitando assim a máxima performance e a segurança garantida dos parafusos TELLEP. Em caso de dúvida, entre em contato com a Metalac.

A Metalac não recomenda e não se responsabiliza por tratamentos superficiais efetuados por terceiros em seus produtos.

Tabela 1

TABELA DE FORÇA TENSORA (F_M)

-ÊNCIA	8.8	2.109	3.651	5.982	8436	15495	24685	36005	49455	68171	85850	110512	138290	159137	209839	254870	318113	373048	
E RESIST	10.9	2.742	4.747	7.777	10967	20144	32090	46806	64292	88623	107571	138473	173279	199401	262931	319355	398599	467434	
CLASSE DE RESISTÊNCIA	12.9 Standard	3.216	5.568	9.123	12865	23630	37644	54907	75419	103961	126189	162439	203270	233912	308439	374628	467587	548336	
FM (N)	TELLEP	3632	6291	10300	14529	26673	42478	61943	82068	117138	142302	183029	228872	263561	347229	421893	526219	617296	
DE	89 89	800	800	800	800	800	800	800	800	800	830	830	830	830	830	830	830	830	
CLASSE	10.9	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	1.040	
R _M (N/mm ²) CLASSE RESISTÊNCIA	12.9 Standard	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	1.220	
R _M	TELLEP	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	
	Fator de util. de Rp 02	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	
	Rp 0.2	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	
	Rendimento Standard	0,685	089'0	689'0	0,685	0,692	969'0	869'0	0,700	0,711	0,702	0,711	0,718	0,711	0,719	0,716	0,722	0,719	
	Rendimento Rendi Tellep Star	0,761	0,755	0,766	0,761	0,768	0,772	0,775	0,777	0,788	0,779	0,788	0,795	0,788	0,797	0,793	0,800	0,797	
	A _s (mm ²)	5,0	8,8	14,2	20,1	36,6	58,0	84,3	115,4	156,7	192,5	244,8	303,4	352,5	459,4	9'099	9'869	816,7	
	Passo (mm)	0,5	7'0	8'0	_	1,25	1,5	1,75	2	2	2,5	2,5	2,5	က	8	3,5	3,5	4	
	BITOLA	c	4	2	9	∞	10	12	14	16	18	20	22	24	27	30	33	36	Onde:

 $F_{M} = As \times Rm \times Rendimento \times Rp 0.2 \times Fator$

TABELA DE FORÇA TENSORA (F_M)

ÊNCIA	GRAU 5	1634	2200	2453	3907	5702	4764	10556	8801	16977	14785	26115	22057	35216	30346	47949	40819	77338	65451	68776	135663	178245	287479	417840
E RESIST	GRAU 8	2035	2741	3055	4867	7103	5936	13150	10964	21150	18419	32534	27478	43872	37804	59733	50851	96347	81538	121823	169006	222054	358136	520538
F _M (N) CLASSE DE RESISTÊNCIA	ASME B 18.3 Standard	2440	3287	3664	5837	8518	7118	15770	13149	25364	22089	39015	32953	52612	45336	71634	60982	115541	97783	146094	202677	266293	429486	624242
F _M (N) 6	TELLEP	2718	3658	4082	6493	9464	7927	17501	14632	28132	24557	43213	36616	58285	50367	79284	67716	127782	108530	162038	224710	295207	475799	691415
Ш	GRAU 5	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830	830
LASSE DE	GRAU 8	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034	1.034
R _M (N/mm²) CLASSE RESISTÊNCIA	ASME B 18.3 Standard	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240
RM ()	TELLEP	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240
	Fator de util. de Rp02	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
	Rp 0.2	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0	06'0
	Rendimento Standard	0,648	0,663	0,645	699'0	989'0	0,650	0,700	0,663	0,706	0,678	0,719	0,685	0,717	0,687	0,726	0,693	0,732	869'0	0,706	0,710	0,711	0,717	0,719
	Rendimento Tellep	0,721	0,738	0,719	0,745	0,763	0,724	0,777	0,738	0,783	0,754	0,797	0,761	0,795	0,763	0,803	0,770	0,810	0,775	0,783	0,787	0,788	0,795	0,797
	As (mm²)	4,0	5,2	0'9	9,2	13,1	11,5	23,75	20,90	37,88	34,35	57,17	50,72	77,30	69,55	104,02	92,75	166,30	147,60	218,18	301,02	394,83	631,06	914,79
	Fios por polegada	40 UNRC	40 UNRC	32 UNRC	32 UNRC	32 UNRF	24 UNRC	28 UNRF	20 UNRC	24 UNRF	18 UNRC	24 UNRF	16 UNRC	20 UNRF	14 UNRC	20 UNRF	13 UNRC	18 UNRF	11 UNRC	10 UNRC	9 UNRC	8 UNRC	7 UNRC	6 UNRC
	ITOLA	#4	#2	9#	8#	#10	#10	1/4"	1/4"	5/16"	5/16"	3/8"	3/8″	1/16"	1/16"	1/2"	1/2"	2/8″	2/8″	3/4"	1/8″	-	1/4"	1/2"

. שטייו

 $F_{M} = As \times Rm \times Rendimento \times Rp 0.2 \times Fator$

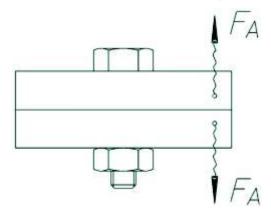
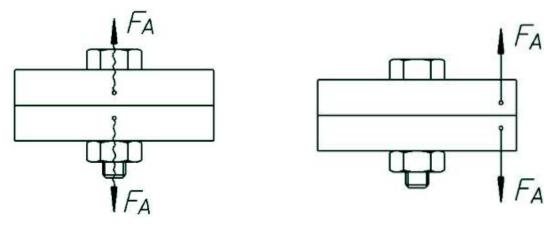
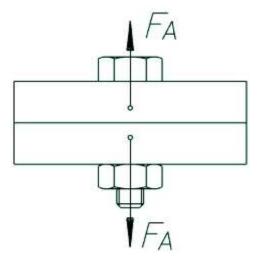

FATOR MULTIPLICADOR (R), EM FUNÇÃO DA FORÇA ATUANTE NA JUNTA

Tabela 2


Se a força atuante na junta for transversal, seja ela estática ou dinâmica (conforme fig. abaixo), adote R = 6,4.


Se a força atuante na junta for axial, dinâmica e excêntrica (conforme fig. abaixo), adote R=2.5

Se a força atuante na junta for axial, dinâmica e concêntrica ou axial, estática e excêntrica (conforme fig. abaixo), adote R=1,575

Se a força atuante na junta for axial, estática e concêntrica (conforme fig. abaixo), adote R=1.

GUIA PARA DEFINIÇÃO DO FATOR DE APERTO

Tabela 3

					Tabela 3			
Fator de aperto A	Dispersão de F _M	Técnicas de aperto	Técnicas de ajustagem	Not	as			
1	±5% até ±12%	Aperto por controle de limite de escoamento (manual ou automático)		A dispersão da força tensora é predominantemente determinada pela dispersão do limite de escoamento do lote de parafusos montados. Neste caso os parafusos são dimensionados por F _{Mmín} ; portanto o fator de aperto A é omitido para este método de aperto.				
1	±5% até ±12%	Aperto por controle de ângulo de giro (manual ou automático)	Determinação experimental da curva torque x ângulo na junta original	Valores inferiores para parafusos				
1,2 até 1,6	±9% até ±23%	Aperto por medição de alongamento (aperto hidráulico)	Ajuste por medição do alongamento do parafuso ou medição de pressão	com grande co Valores superiores par	mprimento.			
1,4 até 1,6	±17% até ±23%		Determinação prática do momento teórico da junta aparafusada original. Por exemplo, mediante a medição do alongamento dos parafusos.	Valores inferiores para: grande número de ensaios (ex.20). pequena dispersão do momento aplicado. Limitação eletrônica do torque durante a montagem em aparafusadeiras	Valores mais baixos para: pequenos ângulos de giro, isto é, juntas relativamente rígidas. Juntas com			
1,6 até 1,8	±23% até ±28%	Aperto por controle de torque ou aparafusadeira de precisão ou medição de torque dinâmico.	Determinação do torque necessário, mediante avaliação dos coeficientes de atrito.	de precisão. Valores inferiores para torquímetro de precisão, por exemplo, torquímetros eletrônicos. Valores superiores para torquímetros sinalizadores ou com catraca.	superfície de apoio de dureza relativamente baixa. Superfície de apoio sem tendência ao engripamento, por exemplo, fosfatizada. Valores mais altos para: grandes ângulos de rotação, isto é, juntas de baixa rigidez, assim como rosca fina. Dureza muito alta da superfície da junta, associada à			
1,7 até 2,5	±26% até ±43%	Aperto por controle de torque mediante aparafusadeira.	Ajuste da aparafusadeira com momento de reaperto tomado a partir do momento teórico de aperto, por estimativa de coeficiente de atrito e de um acréscimo.	Valores inferiores para grande número de ensaios e aparafusadeiras com embreagem de desacoplamento.	rugosidade alta. Desvios de forma.			
2,5 até 4	±43% até ±60%	Aperto por controle de torque com uso de chave de impacto.	Ajuste da aparafusadeira através de momento de reaperto, como acima.	Valores ir Para grande número de ensai horizontal da curva. Apar Transmissão de impul:	os, trabalhando no trecho rafusadeiras precisas.			

COEFICIENTE DE TORQUE (K)

Parafuso Cabeça Cilíndrica com Sextavado Interno

Métrico: DIN 912 - ISO 4762

Polegada: ASME B 18.3

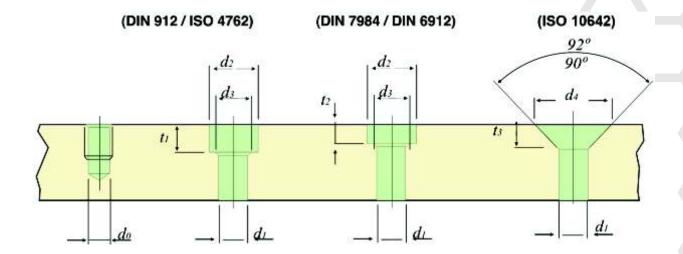
Tabela 4

											ıaı	
		-			Coe	eficier	nte de	atrit	o na d	cabeç	а	
1	_	Pa	asso	0,08	0,09	0,10	0,12	0,14	0,15	0,16	0,20	0,24
	ca	0,08	Normal	0,117	0,123	0,130	0,143	0,155	0,162	0,168	0,194	0,220
	ros	0,08	Fino	0,114	0,121	0,127	0,140	0,153	0,159	0,166	0,191	0,217
	7	0,09	Normal	0,122	0,128	0,135	0,148	0,161	0,167	0,174	0,199	0,225
	a	0,09	Fino	0,119	0,126	0,132	0,145	0,158	0,164	0,171	0,197	0,222
		0,10	Normal	0,127	0,134	0,140	0,153	0,166	0,172	0,179	0,205	0,230
	9	0,10	Fino	0,125	0,131	0,138	0,150	0,163	0,170	0,176	0,202	0,228
	rito	0,12	Normal	0,138	0,144	0,151	0,164	0,176	0,183	0,189	0,215	0,241
	atı	0,12	Fino	0,135	0,142	0,148	0,161	0,174	0,180	0,187	0,213	0,238
		0,14	Normal	0,148	0,155	0,161	0,174	0,187	0,193	0,200	0,226	0,251
	de	0,14	Fino	0,146	0,153	0,159	0,172	0,185	0,191	0,198	0,223	0,249
		0,15	Normal	0,154	0,160	0,166	0,179	0,192	0,199	0,205	0,231	0,256
	Coeficiente	0,15	Fino	0,151	0,158	0,164	0,177	0,190	0,196	0,203	0,229	0,254
	e	0,16	Normal	0,159	0,165	0,172	0,185	0,197	0,204	0,210	0,236	0,262
	Ö	0,16	Fino	0,157	0,163	0,170	0,182	0,195	0,202	0,208	0,234	0,260
	Ę	0,20	Normal	0,180	0,186	0,193	0,206	0,218	0,225	0,231	0,257	0,283
	90	0,20	Fino	0,178	0,184	0,191	0,204	0,217	0,223	0,230	0,255	0,281
	ŭ	0,24	Normal	0,201	0,207	0,214	0,227	0,239	0,246	0,252	0,278	0,304
		0,24	Fino	0,199	0,206	0,212	0,225	0,238	0,244	0,251	0,277	0,302

GARANTIA DE RESISTÊNCIA À FADIGA DO PARAFUSO TELLEP

Resistência à fadiga, conforme equação desenvolvida por Kloos e Thomala para parafusos com rosca rolada antes de tratamento térmico.

Ensaio conforme ISO 3800 com carga média = 0,75 RP 0,2

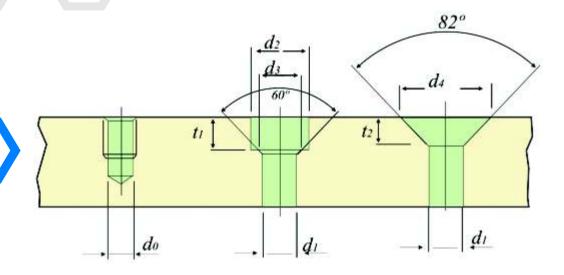

Tabela 5

Bitola	Comprime	ento (mm)	Resistência à fadiga
	mínimo	máximo	(<u>†</u> _A N/mm²)
M5	12	50	66,00
M6	8	90	61,50
M8	10	140	55,90
M10	12	150	52,50
M12	16	200	50,30
M14	25	100	48,60
M16	25	100	47,40
M18	35	180	46,50
M20	35	180	45,80
M24	40	180	44,60

Bitola	Comprimo mínimo	ento (mm) máximo	Resistência à fadiga († A N/mm²)			
#10	1/2"	2"	67,00			
1/4"	3/8"	3 1/2"	60,30			
5/16"	3/8"	5"	56,00			
3/8"	1/2"	6"	53,20			
7/16"	5/8"	3 1/2"	51,10			
1/2"	1/2"	3 1/2"	49,60			
5/8"	1″	4"	47,50			
3/4"	1"	7"	46,10			
7/8"	1 1/4"	7"	45,10			
1″	1 1/2"	7"	44,30			

DADOS DE APLICAÇÃO Dimensão de Escareado e Furo de Passagem

 $d_0 = Furo para corte da rosca$ $d_1 = Furo de passagem - grau médio (ISO 273)$

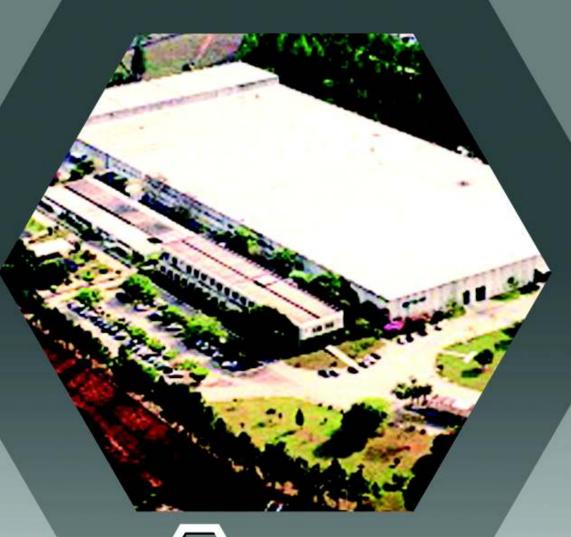

Dimensões em milímetros

Diâm. Nom.	Passo	do	d ₁ (H13)	d ₂ (H13)	d₃ (1) máx	d ₄ (H13)	t ₁	t ₂	t³ (Nom.)
M3	0,5	2,50 - 2,60	3,4	6,0	-	7,2	3,4-3,6	-	1,9
M4	0,7	3,30 – 3,40	4,5	8,0	-	9,5	4,6-5,0	3,2-3,6	2,5
M5	0,8	4,20 - 4,30	5,5	10,0	-	11,7	5,7-6,1	4,0-4,4	3,1
M6	1	5,00-5,15	6,6	11,0		14,2	6,8-7,2	4,7-5,1	3,8
M8	1,25	6,80-6,90	9,0	15,0	-	19,2	9,0-9,4	6,0-6,4	5,1
M10	1,5	8,50-8,65	11,0	18,0	-	23,8	11,0-11,4	7,0-7,4	6,4
M12	1,75	10,30-10,40	13,5	20,0	16,0	28,9	13,0-13,4	8,0-8,4	7,7
M14	2	12,00-12,20	15,5	24,0	18,0	-	15,0-15,4	-	-
M16	2	14,00-14,20	17,5	26,0	20,0	36,1	17,5-17,9	10,5-10,9	9,3
M18	2,5	15,50-15,70	20,0	30,0	22,0	-	19,5-19,9	-	-
M20	2,5	17,50-17,70	22,0	33,0	24,0	43,4	21,5-21,9	-	10,7
M22	2,5	19,50-19,70	24,0	36,0	26,0	-	23,5-23,9	-	-
M24	3	21,00-21,25	26,0	40,0	28,0	-	25,5-25,9	-	-
M27	3	24,00-24,25	30,0	43,0	33,0	-	28,5-28,9	-	-
M30	3,5	26,50-26,75	33,0	48,0	36,0	-	32,0-32,6	-	
M36	4	32,00-32,25	39,0	57,0	42,0	-	38,0-38,6	-	-

(1) Chanfro de 90°. Para diâmetro de rosca menores que M12, deve ser somente removido rebarbas.

DADOS DE APLICAÇÃO Dimensão de Escareado e Furo de Passagem (ASME B 18.3)

do = Furo para corte da rosca


 d_1 = Furo de passagem - ajuste normal (ASME B 18.3 - APPENDIX A)

Dimensões em milímetros

	Diâm. Nom.	Fios por p	oolegada	do		d1 (Nom.)	d2 (Nom.)	d3 (1) (máx)	d4 (Nom.)	t1 (Nom.)	t2 (Nom.)
		UNRC	UNRF	UNRC	UNRF						
	#4	40	48	2,27-2,38	2,36-2,46	3,2	5,6	3,30	7,1	3,2	2,3
	#5	40	44	2,59-2,70	2,65-2,75	3,6	6,4	3,70	7,8	3,6	2,5
	#6	32	40	2,77-2,90	2,92-3,02	3,9	7,1	4,02	8,8	4,0	2,9
	#8	32	36	3,40-3,53	3,50-3,61	4,6	7,9	4,80	10,1	4,7	3,3
	#10	24	32	3,80-3,96	4,06-4,16	5,2	9,5	5,54	11,4	5,5	3,7
	1/4″	20	28	5,13-5,26	5,49-5,59	6,8	11,1	7,06	14,5	7,1	4,6
	5/16"	18	24	6,58-6,73	6,91-7,03	8,3	13,5	8,80	17,9	8,9	5,7
	3/8"	16	24	7,98-8,15	8,51-8,64	9,9	15,9	10,55	21,3	10,5	6,8
	7/16"	14	20	9,35-9,55	9,88-10,03	11,5	18,3	12,30	23,0	12,1	6,8
	1/2"	13	20	10,79-11,02	11,48-11,60	13,1	20,6	14,05	25,8	13,7	7,6
	5/8″	11	18	13,61-13,87	14,50-14,68	16,3	25,4	17,50	32,2	17,4	9,5
	3/4"	10	16	16,56-16,84	17,50-17,68	19,5	30,2	21,05	38,5	20,5	11,3
	7/8″	9	14	19,46-19,76	20,47-20,67	22,6	34,9	24,50	-	23,7	-
	1″	8	12	22,28-22,60	23,34-23,57	25,8	41,3	27,95	-	26,9	-
	1 1/4"	7	12	25,00-25,35	26,52-26,75	32,5	50,8	34,80	-	33,3	-
	1 1/2"	6	12	33,91-34,29	36,04-36,27	38,9	60,3	41,70	-	40,1	-

(1) É aconselhável escarear ou quebrar os cantos dos furos de passagem em peças que têm a dureza próxima, igual ou maior que a dureza do parafuso. O escareado ou o alívio dos cantos, entretanto, não deve ser maior do que o necessário para garantir que o raio de assentamento do parafuso fique livre. Normalmente, o diâmetro do escareado não deve exceder o diâmetro de assentamento do parafuso, pois isso pode reduzir a área efetiva de assentamento.

METALAC SPS FASTENER DIVISION

Revendedor

Av. Itavuvu, 4690 - Cep. 18078-005 - Sorocaba - SP - Brasil Fone: 55 15. 3334.3548 / 3563 / 3571 - Fax: 55 15. 3334.3587 / 3544 e-mail: tellep@metalac.com.br

Site: www.metalac.com.br